| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.06.21.1007.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[1/Sqrt[(a + b Sin[e z]^2) (c + d Sin[e z]^2)], z] == 
 ((2 a + b - b Cos[2 e z]) Sqrt[-((c Cot[e z]^2)/(c + d))] 
   Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/((-b) c + a d)] 
   EllipticF[ArcSin[Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/
       (-2 b c + 2 a d)]], ((-b) c + a d)/(a (c + d))] Tan[e z])/
  (a e Sqrt[(-(2 a + b - b Cos[2 e z])) (-2 c - d + d Cos[2 e z])] 
   Sqrt[(c (2 a + b - b Cos[2 e z]) Csc[e z]^2)/(b c - a d)]) | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]], " ", RowBox[List["Tan", "[", RowBox[List["e", " ", "z"]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "-", "d", "+", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]]]], ")"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mfrac>  <mn> 1 </mn>  <msqrt>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> + </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  </mfrac>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cot </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> d </mi>  </mrow>  </mfrac>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csc </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ⁢ </mo>  <mrow>  <mi> F </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> sin </mi>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  </msup>  <mo> ( </mo>  <msqrt>  <mfrac>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> + </mo>  <mi> d </mi>  <mo> - </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csc </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  <mo> ) </mo>  </mrow>  <mo> ❘ </mo>  <mfrac>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> + </mo>  <mi> d </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mi> tan </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> / </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <msqrt>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> d </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msqrt>  <mo> ⁢ </mo>  <msqrt>  <mfrac>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  </mrow>  <mo> + </mo>  <mi> b </mi>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mrow>  <mi> cos </mi>  <mo> ⁡ </mo>  <mo> ( </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> csc </mi>  <mn> 2 </mn>  </msup>  <mo> ( </mo>  <mrow>  <mi> e </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> d </mi>  </mrow>  </mrow>  </mfrac>  </msqrt>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <cn type='integer'> 1 </cn>  <apply>  <power />  <apply>  <power />  <apply>  <times />  <apply>  <plus />  <ci> a </ci>  <apply>  <times />  <ci> b </ci>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <ci> c </ci>  <apply>  <times />  <ci> d </ci>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> c </ci>  <apply>  <power />  <apply>  <cot />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <ci> c </ci>  <ci> d </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> d </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <csc />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <ci> EllipticF </ci>  <apply>  <arcsin />  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <ci> d </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> d </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <csc />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <ci> d </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> c </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> c </ci>  <ci> d </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <tan />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> a </ci>  <ci> e </ci>  <apply>  <power />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> d </ci>  </apply>  <apply>  <times />  <ci> d </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  </apply>  <ci> b </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <apply>  <cos />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <csc />  <apply>  <times />  <ci> e </ci>  <ci> z </ci>  </apply>  </apply>  <cn type='integer'> 2 </cn>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <ci> b </ci>  <ci> c </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> d </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["c_", "+", RowBox[List["d_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]], " ", RowBox[List["Tan", "[", RowBox[List["e", " ", "z"]], "]"]]]], RowBox[List["a", " ", "e", " ", SqrtBox[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c"]], "-", "d", "+", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |