|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.1008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/(Sqrt[(a + b Sin[e z]^2) (c + d Sin[e z]^2)] (f + g Sin[e z]^2)),
z] == (Sqrt[a + b Sin[e z]^2] Sqrt[c + d Sin[e z]^2]
((a^2 c g Cos[e z] Sqrt[(2 a + b - b Cos[2 e z])/a]
Sqrt[(a (2 c + d - d Cos[2 e z]))/(c (2 a + b - b Cos[2 e z]))]
EllipticPi[(b f - a g)/(a f + b f),
ArcSin[(Sqrt[(2 a + 2 b)/a] Sin[e z])/Sqrt[(2 a + b - b Cos[2 e z])/
a]], (b c - a d)/(a c + b c)])/
Sqrt[(a Cos[e z]^2)/(2 a + b - b Cos[2 e z])] +
b Sqrt[(a + b)/a] ((-b) c + a d) f Sqrt[-((c Cot[e z]^2)/(c + d))]
Sqrt[(c (2 a + b - b Cos[2 e z]) Csc[e z]^2)/(b c - a d)]
Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/((-b) c + a d)]
EllipticF[ArcSin[Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/
(-2 b c + 2 a d)]], ((-b) c + a d)/(a (c + d))] Sin[e z]^2
Tan[e z]))/(a Sqrt[(a + b)/a] c e f ((-b) f + a g)
Sqrt[2 a + b - b Cos[2 e z]] Sqrt[2 c + d - d Cos[2 e z]]
Sqrt[(a + b Sin[e z]^2) (c + d Sin[e z]^2)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]]]]], RowBox[List["(", RowBox[List["f", "+", RowBox[List["g", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "2"], " ", "c", " ", "g", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["b", " ", "f"]], "-", RowBox[List["a", " ", "g"]]]], RowBox[List[RowBox[List["a", " ", "f"]], "+", RowBox[List["b", " ", "f"]]]]], ",", RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "a"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List["b", " ", "c"]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]], ")"]]]], "+", RowBox[List["b", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], ")"]], " ", "f", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"], " ", RowBox[List["Tan", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["a", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", "c", " ", "e", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "f"]], "+", RowBox[List["a", " ", "g"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> g </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> g </mi> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> </mrow> </mfrac> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> g </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <ci> c </ci> <ci> g </ci> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> g </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> f </ci> </apply> <apply> <times /> <ci> b </ci> <ci> f </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <cot /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> f </ci> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> c </ci> <ci> d </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <ci> e </ci> <ci> f </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> f </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["c_", "+", RowBox[List["d_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]]]]], " ", RowBox[List["(", RowBox[List["f_", "+", RowBox[List["g_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", SqrtBox[RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["a", "2"], " ", "c", " ", "g", " ", RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["b", " ", "f"]], "-", RowBox[List["a", " ", "g"]]]], RowBox[List[RowBox[List["a", " ", "f"]], "+", RowBox[List["b", " ", "f"]]]]], ",", RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "a"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List["b", " ", "c"]]]]]]], "]"]]]], SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]]], "+", RowBox[List["b", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], ")"]], " ", "f", " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"], " ", RowBox[List["Tan", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["a", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", "c", " ", "e", " ", "f", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "f"]], "+", RowBox[List["a", " ", "g"]]]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|