Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Other integrals





http://functions.wolfram.com/01.06.21.1009.01









  


  










Input Form





Integrate[Sin[e z]^2/Sqrt[(a + b Sin[e z]^2) (c + d Sin[e z]^2)^3], z] == -(Cos[e z] (a Sqrt[(a + b)/a] (2 c + d - d Cos[2 e z]) EllipticE[ArcSin[(Sqrt[(2 a + 2 b)/a] Sin[e z])/ Sqrt[(2 a + b - b Cos[2 e z])/a]], (b c - a d)/(a c + b c)] + (b c - a d) Sqrt[(a Cos[e z]^2)/(2 a + b - b Cos[2 e z])] Sqrt[(2 a + b - b Cos[2 e z])/a] Sqrt[(a (2 c + d - d Cos[2 e z]))/ (c (2 a + b - b Cos[2 e z]))] (-2 + (1/Sqrt[-((c Cot[e z]^2)/(c + d))]) (Sqrt[(c (2 a + b - b Cos[2 e z]) Csc[e z]^2)/(b c - a d)] Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/((-b) c + a d)] EllipticF[ArcSin[Sqrt[(a (2 c + d - d Cos[2 e z]) Csc[e z]^2)/ (-2 b c + 2 a d)]], ((-b) c + a d)/(a (c + d))])) Sin[e z]) Sqrt[a + b Sin[e z]^2] (c + d Sin[e z]^2)^(3/2))/ ((c + d) ((-b) c + a d) e Sqrt[(a Cos[e z]^2)/(2 a + b - b Cos[2 e z])] Sqrt[2 a + b - b Cos[2 e z]] Sqrt[(2 a + b - b Cos[2 e z])/a] Sqrt[2 c + d - d Cos[2 e z]] Sqrt[(a (2 c + d - d Cos[2 e z]))/ (c (2 a + b - b Cos[2 e z]))] Sqrt[(a + b Sin[e z]^2) (c + d Sin[e z]^2)^3])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "a"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List["b", " ", "c"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]]], RowBox[List["(", RowBox[List[SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], ")"]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> </mrow> </mfrac> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> csc </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> c </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <arcsin /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <cot /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <csc /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> c </ci> <ci> d </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> c </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <ci> d </ci> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> c </ci> </apply> </apply> </apply> <ci> e </ci> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <sin /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> c </ci> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"], SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c_", "+", RowBox[List["d_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "3"]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b"]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["ArcSin", "[", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", "b"]]]], "a"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]], SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], RowBox[List[RowBox[List["a", " ", "c"]], "+", RowBox[List["b", " ", "c"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", FractionBox[RowBox[List[SqrtBox[FractionBox[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["b", " ", "c"]], "-", RowBox[List["a", " ", "d"]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Csc", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "c"]], "+", RowBox[List["2", " ", "a", " ", "d"]]]]]], "]"]], ",", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], RowBox[List["a", " ", RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]]]]]]], "]"]]]], SqrtBox[RowBox[List["-", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List["c", "+", "d"]]]]]]]]], ")"]], " ", RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], RowBox[List[RowBox[List["(", RowBox[List["c", "+", "d"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "c"]], "+", RowBox[List["a", " ", "d"]]]], ")"]], " ", "e", " ", SqrtBox[FractionBox[RowBox[List["a", " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], "a"]], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]]], " ", SqrtBox[FractionBox[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d", "-", RowBox[List["d", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", "b", "-", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "e", " ", "z"]], "]"]]]]]], ")"]]]]]], " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "+", RowBox[List["d", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18