Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function and a power function > Involving powers of the direct function and a power function > Involving powers of sin and power > Involving zalpha-1 sinnu(a z+b)





http://functions.wolfram.com/01.06.21.1038.01









  


  










Input Form





Integrate[z Sin[a z + b]^\[Nu], z] == (1/(2 a^2)) Sin[b + a z]^(1 + \[Nu]) ((1/(1 + \[Nu])) (2 (b + a z) Cos[b + a z] Hypergeometric2F1[1, (2 + \[Nu])/2, (3 + \[Nu])/2, Sin[b + a z]^2]) - 2^(-1 - \[Nu]) Sqrt[Pi] Gamma[1 + \[Nu]] HypergeometricPFQRegularized[ {1, (2 + \[Nu])/2, (2 + \[Nu])/2}, {(3 + \[Nu])/2, (4 + \[Nu])/2}, Sin[b + a z]^2] Sin[b + a z] + 2 b Cos[b + a z] Hypergeometric2F1[1/2, (1 - \[Nu])/2, 3/2, Cos[b + a z]^2] (Sin[b + a z]^2)^((1/2) (-1 - \[Nu])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List["z", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]], "]"]], "\[Nu]"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["2", " ", SuperscriptBox["a", "2"]]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["1", "+", "\[Nu]"]]], RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["4", "+", "\[Nu]"]], "2"]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox["3", "2"], ",", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], ")"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> &#957; </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> &#957; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> cos </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;1&quot;, &quot;-&quot;, &quot;\[Nu]&quot;]], &quot;2&quot;], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[&quot;3&quot;, &quot;2&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[SuperscriptBox[&quot;cos&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]]]], &quot;)&quot;]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;2&quot;, TraditionalForm]], SubscriptBox[&quot;F&quot;, FormBox[&quot;1&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, Hypergeometric2F1], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[TagBox[TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;3&quot;]], &quot;2&quot;], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], &quot;;&quot;, TagBox[RowBox[List[SuperscriptBox[&quot;sin&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]]]], &quot;)&quot;]], Hypergeometric2F1]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> &#957; </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 3 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 3 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> &#957; </mi> <mo> + </mo> <mn> 4 </mn> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, FormBox[&quot;3&quot;, TraditionalForm]], SubscriptBox[OverscriptBox[&quot;F&quot;, &quot;~&quot;], FormBox[&quot;2&quot;, TraditionalForm]]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[RowBox[List[TagBox[&quot;1&quot;, HypergeometricPFQRegularized], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], HypergeometricPFQRegularized], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;2&quot;]], &quot;2&quot;], HypergeometricPFQRegularized]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized], &quot;;&quot;, TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;3&quot;]], &quot;2&quot;], HypergeometricPFQRegularized], &quot;,&quot;, TagBox[FractionBox[RowBox[List[&quot;\[Nu]&quot;, &quot;+&quot;, &quot;4&quot;]], &quot;2&quot;], HypergeometricPFQRegularized]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized], &quot;;&quot;, TagBox[RowBox[List[SuperscriptBox[&quot;sin&quot;, &quot;2&quot;], &quot;(&quot;, RowBox[List[&quot;b&quot;, &quot;+&quot;, RowBox[List[&quot;a&quot;, &quot; &quot;, &quot;z&quot;]]]], &quot;)&quot;]], HypergeometricPFQRegularized]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]]], HypergeometricPFQRegularized] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <power /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> <ci> b </ci> </apply> </apply> <ci> &#957; </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <power /> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <apply> <cos /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#957; </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <list> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> &#957; </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List["z_", " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]], "]"]], "\[Nu]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], RowBox[List["1", "+", "\[Nu]"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List["1", ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]]]], RowBox[List["1", "+", "\[Nu]"]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Gamma", "[", RowBox[List["1", "+", "\[Nu]"]], "]"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", RowBox[List["1", ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["2", "+", "\[Nu]"]], "2"]]], "}"]], ",", RowBox[List["{", RowBox[List[FractionBox[RowBox[List["3", "+", "\[Nu]"]], "2"], ",", FractionBox[RowBox[List["4", "+", "\[Nu]"]], "2"]]], "}"]], ",", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]]]], "+", RowBox[List["2", " ", "b", " ", RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox[RowBox[List["1", "-", "\[Nu]"]], "2"], ",", FractionBox["3", "2"], ",", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"]]], "]"]], " ", SuperscriptBox[RowBox[List["(", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "2"], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "\[Nu]"]], ")"]]]]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox["a", "2"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18