|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.1362.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(b z^2 + e) Sin[a z^2 + q] Sin[c z^2 + g], z] ==
(1/8) E^(e - I (g + q)) Sqrt[Pi] ((E^(2 I q) Erfi[Sqrt[I a + b - I c] z])/
Sqrt[I a + b - I c] + (E^(2 I g) Erfi[Sqrt[(-I) a + b + I c] z])/
Sqrt[(-I) a + b + I c] - (E^(2 I (g + q)) Erfi[Sqrt[I a + b + I c] z])/
Sqrt[I a + b + I c] - Erfi[Sqrt[(-I) (a + I b + c)] z]/
Sqrt[(-I) (a + I b + c)])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", "e"]]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "+", "q"]], "]"]], RowBox[List["Sin", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["g", "+", "q"]], ")"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g"]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["g", "+", "q"]], ")"]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "-", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]], " ", "z"]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> q </ci> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> g </ci> <ci> q </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> q </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <plus /> <ci> g </ci> <ci> q </ci> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", "e_"]]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["a_", " ", SuperscriptBox["z_", "2"]]], "+", "q_"]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["g", "+", "q"]], ")"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "q"]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g"]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["g", "+", "q"]], ")"]]]]], " ", RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], " ", "z"]], "]"]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]], "-", FractionBox[RowBox[List["Erfi", "[", RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]], " ", "z"]], "]"]], SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|