|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.06.21.1422.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[E^(b z^r + e) Sin[a z^r + q]^m Sin[c z^r + g]^v, z] ==
(-(1/r)) (((-1)^m 2^(-m - v) E^e z Binomial[m, m/2] Binomial[v, v/2]
Gamma[1/r, (-b) z^r] (1 - Mod[m, 2]) (1 - Mod[v, 2]))/
((-b) z^r)^r^(-1)) - ((1/r) 2^(-m - v) z Binomial[v, v/2]
(1 - Mod[v, 2]) Sum[(-1)^k Binomial[m, k]
((E^(e - 2 I k q + I m q) Gamma[1/r, (-b + 2 I a k - I a m) z^r])/
((-b + 2 I a k - I a m) z^r)^r^(-1) +
((-1)^m E^(e + 2 I k q - I m q) Gamma[1/r, (-b - 2 I a k + I a m)
z^r])/((-b - 2 I a k + I a m) z^r)^r^(-1)),
{k, 0, Floor[(1/2) (-1 + m)]}])/I^m -
(1/r) (((-1)^m 2^(-m - v) z Binomial[m, m/2] (1 - Mod[m, 2])
Sum[(-1)^k Binomial[v, k] ((E^(e - 2 I g k + I g v)
Gamma[1/r, (-b + 2 I c k - I c v) z^r])/
((-b + 2 I c k - I c v) z^r)^r^(-1) +
((-1)^v E^(e + 2 I g k - I g v) Gamma[1/r, (-b - 2 I c k + I c v)
z^r])/((-b - 2 I c k + I c v) z^r)^r^(-1)),
{k, 0, Floor[(1/2) (-1 + v)]}])/I^v) - ((I^(m - v) 2^(-m - v) z)/r)
Sum[(-1)^k Binomial[m, k] Sum[(-1)^s Binomial[v, s]
(((-1)^m E^(e - 2 I k q + I m q - 2 I g s + I g v)
Gamma[1/r, (-b + 2 I a k - I a m + 2 I c s - I c v) z^r])/
((-b + 2 I a k - I a m + 2 I c s - I c v) z^r)^r^(-1) +
(E^(e + 2 I k q - I m q - 2 I g s + I g v) Gamma[1/r,
(-b - 2 I a k + I a m + 2 I c s - I c v) z^r])/
((-b - 2 I a k + I a m + 2 I c s - I c v) z^r)^r^(-1) +
((-1)^(m + v) E^(e - 2 I k q + I m q + 2 I g s - I g v)
Gamma[1/r, (-b + 2 I a k - I a m - 2 I c s + I c v) z^r])/
((-b + 2 I a k - I a m - 2 I c s + I c v) z^r)^r^(-1) +
((-1)^v E^(e + 2 I k q - I m q + 2 I g s - I g v)
Gamma[1/r, (-b - 2 I a k + I a m - 2 I c s + I c v) z^r])/
((-b - 2 I a k + I a m - 2 I c s + I c v) z^r)^r^(-1)),
{s, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /;
Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "r"]]], "+", "e"]]], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["a", " ", SuperscriptBox["z", "r"]]], "+", "q"]], "]"]], "m"], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "r"]]], "+", "g"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "r"]]], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", "e"], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "r"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], ")"]]]], "-", RowBox[List[FractionBox["1", "r"], SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]], "-", RowBox[List[FractionBox["1", "r"], RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["m", "-", "v"]]], SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " "]], "r"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mi> e </mi> </msup> <mo> ⁢ </mo> <mi> z </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> r </mi> </mfrac> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mi> r </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅈ </mi> <mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mi> r </mi> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅈ </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <mi> z </mi> <mtext> </mtext> </mrow> <mi> r </mi> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> m </mi> <mo> + </mo> <mi> v </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mi> e </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> k </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> m </mi> <mo> ⁢ </mo> <mi> q </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> <mo> ∧ </mo> <mrow> <mi> v </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> q </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> g </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <ci> e </ci> </apply> <ci> z </ci> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <ci> z </ci> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> m </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <power /> <exponentiale /> <apply> <plus /> <ci> e </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> k </ci> <ci> q </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> m </ci> <ci> q </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> g </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> g </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> a </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "r_"]]], "+", "e_"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["a_", " ", SuperscriptBox["z_", "r_"]]], "+", "q_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "r_"]]], "+", "g_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", SuperscriptBox["\[ExponentialE]", "e"], " ", "z", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["-", "b"]], " ", SuperscriptBox["z", "r"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "r"]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "m"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]], "r"], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z", " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]], "r"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["m", "-", "v"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", "z"]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "m"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["m", "+", "v"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "+", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "k", " ", "q"]], "-", RowBox[List["\[ImaginaryI]", " ", "m", " ", "q"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "g", " ", "s"]], "-", RowBox[List["\[ImaginaryI]", " ", "g", " ", "v"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "a", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "v"]]]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]]]]]]]]]], "r"]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|