Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Integration > Indefinite integration > Involving functions of the direct function, exponential and a power functions > Involving products of powers of the direct function, exponential and a power functions > Involving product of powers of two direct functions, exponential and a power functions > Involving zalpha-1ep zsinm(c z+d) sinv(a z+b)





http://functions.wolfram.com/01.06.21.1590.01









  


  










Input Form





Integrate[z^(\[Alpha] - 1) E^(p z) Sin[d + c z]^m Sin[b + a z]^v, z] == ((-2^(-m - v)) Binomial[m, m/2] (1 - Mod[m, 2]) Binomial[v, v/2] (1 - Mod[v, 2]) z^\[Alpha] Gamma[\[Alpha], (-p) z])/((-p) z)^\[Alpha] - 2^(-m - v) z^\[Alpha] Binomial[v, v/2] (1 - Mod[v, 2]) Sum[((-1)^k Binomial[m, k] ((((-((-I) c (-2 k + m) + p)) z)^\[Alpha] Gamma[\[Alpha], (-(I c (-2 k + m) + p)) z])/ E^(I (2 d k - d m + (m Pi)/2)) + ((-(I c (-2 k + m) + p)) z)^ \[Alpha] Gamma[\[Alpha], (-((-I) c (-2 k + m) + p)) z] E^(I (2 d k - d m + (m Pi)/2))))/(((-((-I) c (-2 k + m) + p)) z)^ \[Alpha] ((-(I c (-2 k + m) + p)) z)^\[Alpha]), {k, 0, Floor[(1/2) (-1 + m)]}] - 2^(-v - m) z^\[Alpha] Binomial[m, m/2] (1 - Mod[m, 2]) Sum[((-1)^s Binomial[v, s] ((((-(p - I a (-2 s + v))) z)^\[Alpha] Gamma[\[Alpha], (-(p + I a (-2 s + v))) z])/E^(I (2 b s - b v + (Pi v)/2)) + ((-(p + I a (-2 s + v))) z)^\[Alpha] Gamma[\[Alpha], (-(p - I a (-2 s + v))) z] E^(I (2 b s - b v + (Pi v)/2))))/ (((-(p - I a (-2 s + v))) z)^\[Alpha] ((-(p + I a (-2 s + v))) z)^ \[Alpha]), {s, 0, Floor[(1/2) (-1 + v)]}] - 2^(-v - m) z^\[Alpha] Sum[(-1)^k Binomial[m, k] Sum[((-1)^s Binomial[v, s] (((-(p + I (2 c k - c m + 2 a s - a v))) z)^ \[Alpha] ((((-(p + I (2 c k - c m - 2 a s + a v))) z)^\[Alpha] ((-(p + I (c (-2 k + m) + a (-2 s + v)))) z)^\[Alpha] Gamma[\[Alpha], (-(p + I (-2 c k + c m + 2 a s - a v))) z])/ E^(I ((1/2) (4 d k - 2 d m + m Pi - 4 b s + 2 b v - Pi v))) + ((I (2 c k - c m + I p - 2 a s + a v) z)^\[Alpha] ((((-(p + I (2 c k - c m - 2 a s + a v))) z)^\[Alpha] Gamma[\[Alpha], (-(p + I (c (-2 k + m) + a (-2 s + v)))) z])/ E^(I (2 d k - d m + (m Pi)/2)) + ((-(p + I (c (-2 k + m) + a (-2 s + v)))) z)^\[Alpha] Gamma[\[Alpha], (-(p + I (2 c k - c m - 2 a s + a v))) z] E^(I (2 d k - d m + (m Pi)/2))))/E^(I (2 b s - b v + (Pi v)/2))) + (I (2 c k - c m + I p - 2 a s + a v) z)^ \[Alpha] ((-(p + I (2 c k - c m - 2 a s + a v))) z)^\[Alpha] ((-(p + I (c (-2 k + m) + a (-2 s + v)))) z)^\[Alpha] Gamma[\[Alpha], (-(p + I (2 c k - c m + 2 a s - a v))) z] E^(I ((1/2) (4 d k - 2 d m + m Pi + 4 b s - 2 b v + Pi v)))))/ ((I (2 c k - c m + I p - 2 a s + a v) z)^\[Alpha] ((-(p + I (2 c k - c m + 2 a s - a v))) z)^\[Alpha] ((-(p + I (2 c k - c m - 2 a s + a v))) z)^\[Alpha] ((-(p + I (c (-2 k + m) + a (-2 s + v)))) z)^\[Alpha]), {s, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", RowBox[List["\[Alpha]", "-", "1"]]], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], "m"], SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "p"]], " ", "z"]]]], "]"]]]], " ", "-", " ", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "v"]], "-", "m"]]], SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]]]], ")"]]]]]]]], "-", " ", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "v"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["m", " ", "\[Pi]"]], "-", RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "v"]], "-", RowBox[List["\[Pi]", " ", "v"]]]], ")"]]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", RowBox[List["(", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["m", " ", "\[Pi]"]], "+", RowBox[List["4", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "v"]], "+", RowBox[List["\[Pi]", " ", "v"]]]], ")"]]]], ")"]]]]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mrow> <mi> &#945; </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sin </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;s&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;k&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> s </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity, Rule[Editable, True]]], List[TagBox[&quot;s&quot;, Identity, Rule[Editable, True]]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> - </mo> <mi> &#945; </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> + </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> &#960; </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> p </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mi> &#945; </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#945; </mi> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <apply> <plus /> <ci> &#945; </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <sin /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <ci> c </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <ci> p </ci> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <pi /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <pi /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <ci> a </ci> <imaginaryi /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> &#945; </ci> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> k </ci> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> s </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> s </ci> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> &#945; </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <pi /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <pi /> <ci> v </ci> </apply> </apply> <apply> <times /> <ci> m </ci> <pi /> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <pi /> <ci> v </ci> </apply> <apply> <times /> <ci> m </ci> <pi /> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> p </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> a </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> <ci> &#945; </ci> </apply> <apply> <ci> Gamma </ci> <ci> &#945; </ci> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <ci> v </ci> </apply> </apply> </apply> </apply> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", RowBox[List["\[Alpha]_", "-", "1"]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["d_", "+", RowBox[List["c_", " ", "z_"]]]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", SuperscriptBox["z", "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", "p"]], " ", "z"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", "p"]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "v"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "v"]], "-", "m"]]], " ", SuperscriptBox["z", "\[Alpha]"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], RowBox[List["-", "\[Alpha]"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["-", "\[ImaginaryI]"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["m", " ", "\[Pi]"]], "-", RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "b", " ", "v"]], "-", RowBox[List["\[Pi]", " ", "v"]]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "d", " ", "k"]], "-", RowBox[List["d", " ", "m"]], "+", FractionBox[RowBox[List["m", " ", "\[Pi]"]], "2"]]], ")"]]]]]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]], "+", FractionBox[RowBox[List["\[Pi]", " ", "v"]], "2"]]], ")"]]]]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["\[ImaginaryI]", " ", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "+", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]]]]]], ")"]]]], " ", "z"]], ")"]], "\[Alpha]"], " ", RowBox[List["Gamma", "[", RowBox[List["\[Alpha]", ",", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["p", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "m"]], "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", "z"]]]], "]"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "d", " ", "k"]], "-", RowBox[List["2", " ", "d", " ", "m"]], "+", RowBox[List["m", " ", "\[Pi]"]], "+", RowBox[List["4", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "b", " ", "v"]], "+", RowBox[List["\[Pi]", " ", "v"]]]], ")"]]]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18