Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sin






Mathematica Notation

Traditional Notation









Elementary Functions > Sin[z] > Representations through equivalent functions > With related functions > Involving tanh





http://functions.wolfram.com/01.06.27.0053.01









  


  










Input Form





Sin[z] == ((I Tanh[I z])/Sqrt[1 - Tanh[I z]^2]) (-1)^Floor[-(1/2) - Re[z]/Pi] (1 - (1 + (-1)^(Floor[1/2 - Re[z]/Pi] + Floor[-(1/2) + Re[z]/Pi])) UnitStep[-Im[z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["Sin", "[", "z", "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tanh", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]], "2"]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]], RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> tanh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <msup> <mi> tanh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mo> &#8970; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> + </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> <mo> + </mo> <mrow> <mo> &#8970; </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> Re </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mi> &#960; </mi> </mfrac> </mrow> <mo> &#8971; </mo> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#952; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mrow> <mi> Im </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <sin /> <ci> z </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <tanh /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <tanh /> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <floor /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <floor /> <apply> <plus /> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <floor /> <apply> <plus /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <real /> <ci> z </ci> </apply> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> &#952; </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <imaginary /> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Sin", "[", "z_", "]"]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tanh", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], "-", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]], "+", RowBox[List["Floor", "[", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "+", FractionBox[RowBox[List["Re", "[", "z", "]"]], "\[Pi]"]]], "]"]]]]]]], ")"]], " ", RowBox[List["UnitStep", "[", RowBox[List["-", RowBox[List["Im", "[", "z", "]"]]]], "]"]]]]]], ")"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox[RowBox[List["Tanh", "[", RowBox[List["\[ImaginaryI]", " ", "z"]], "]"]], "2"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29