|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.13.0006.02
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Derivative[1][w][z] - Sqrt[1 + w[z]^2] == 0 /;
w[z] == Sinh[z] && w[0] == 0 && Abs[Im[z]] < Pi/2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]"], "[", "z", "]"]], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["w", "[", "z", "]"]], "2"]]]]]], "\[Equal]", "0"]], "/;", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["Sinh", "[", "z", "]"]]]], "\[And]", RowBox[List[RowBox[List["w", "[", "0", "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mrow> <msup> <mi> w </mi> <mo> ′ </mo> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> w </mi> <mo> ⁡ </mo> <mo> ( </mo> <mn> 0 </mn> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> < </mo> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <plus /> <apply> <partialdiff /> <bvar> <ci> z </ci> </bvar> <apply> <ci> w </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> w </ci> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <and /> <apply> <eq /> <apply> <ci> w </ci> <ci> z </ci> </apply> <apply> <sinh /> <ci> z </ci> </apply> </apply> <apply> <eq /> <apply> <ci> w </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <abs /> <apply> <imaginary /> <ci> z </ci> </apply> </apply> <apply> <times /> <pi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List[SuperscriptBox["w", "\[Prime]", Rule[MultilineFunction, None]], "[", "z_", "]"]], "-", SqrtBox[RowBox[List["1", "+", SuperscriptBox[RowBox[List["w", "[", "z_", "]"]], "2"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["0", "/;", RowBox[List[RowBox[List[RowBox[List["w", "[", "z", "]"]], "\[Equal]", RowBox[List["Sinh", "[", "z", "]"]]]], "&&", RowBox[List[RowBox[List["w", "[", "0", "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List["Abs", "[", RowBox[List["Im", "[", "z", "]"]], "]"]], "<", FractionBox["\[Pi]", "2"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|