Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving rational functions > Involving (a z2+b z+c)-n





http://functions.wolfram.com/01.19.21.0156.01









  


  










Input Form





Integrate[(z Sinh[d z])/(a z^2 + b z + c)^2, z] == (-(1/2)) ((1/(a (b^2 - 4 a c)^(3/2))) (CosIntegral[(I d (b - Sqrt[b^2 - 4 a c] + 2 a z))/(2 a)] ((-b^2 + 4 a c + b Sqrt[b^2 - 4 a c]) d Cosh[((b - Sqrt[b^2 - 4 a c]) d)/ (2 a)] + 2 a b Sinh[((b - Sqrt[b^2 - 4 a c]) d)/(2 a)])) + (1/(a (b^2 - 4 a c)^(3/2))) (CosIntegral[(I d (b + Sqrt[b^2 - 4 a c] + 2 a z))/(2 a)] ((b^2 - 4 a c + b Sqrt[b^2 - 4 a c]) d Cosh[((b + Sqrt[b^2 - 4 a c]) d)/ (2 a)] - 2 a b Sinh[((b + Sqrt[b^2 - 4 a c]) d)/(2 a)])) - (2 (2 c + b z) Sinh[d z])/((b^2 - 4 a c) (c + z (b + a z))) - (1/(a (b^2 - 4 a c)^(3/2))) ((2 a b Cosh[((b - Sqrt[b^2 - 4 a c]) d)/(2 a)] + (-b^2 + 4 a c + b Sqrt[b^2 - 4 a c]) d Sinh[((b - Sqrt[b^2 - 4 a c]) d)/ (2 a)]) SinhIntegral[(d (b - Sqrt[b^2 - 4 a c] + 2 a z))/(2 a)]) + (1/(a (b^2 - 4 a c)^(3/2))) ((2 a b Cosh[((b + Sqrt[b^2 - 4 a c]) d)/(2 a)] - (b^2 - 4 a c + b Sqrt[b^2 - 4 a c]) d Sinh[((b + Sqrt[b^2 - 4 a c]) d)/ (2 a)]) SinhIntegral[(d (b + Sqrt[b^2 - 4 a c] + 2 a z))/(2 a)]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z", " ", RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["b", " ", "z"]], "+", "c"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["CosIntegral", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["CosIntegral", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]]]], ")"]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", RowBox[List["b", " ", "z"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], ")"]]]]], "-", RowBox[List[FractionBox["1", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> Ci </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> Shi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <msqrt> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <ci> z </ci> <apply> <sinh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> <ci> c </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> CosIntegral </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> <ci> d </ci> <apply> <cosh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <sinh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <ci> CosIntegral </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <ci> d </ci> <apply> <cosh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <sinh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <cosh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> <ci> d </ci> <apply> <sinh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> d </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> b </ci> <apply> <cosh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <ci> d </ci> <apply> <sinh /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <ci> SinhIntegral </ci> <apply> <times /> <ci> d </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <ci> z </ci> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> a </ci> <ci> c </ci> </apply> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> z </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["z_", " ", RowBox[List["Sinh", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["a_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["b_", " ", "z_"]], "+", "c_"]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["CosIntegral", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]]]], RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["CosIntegral", "[", FractionBox[RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]]]], RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", RowBox[List["b", " ", "z"]]]], ")"]], " ", RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["z", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], ")"]]]]]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "b", " ", RowBox[List["Cosh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]], "+", RowBox[List["b", " ", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]]]], ")"]], " ", "d", " ", RowBox[List["Sinh", "[", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]]]], ")"]], " ", "d"]], RowBox[List["2", " ", "a"]]], "]"]]]]]], ")"]], " ", RowBox[List["SinhIntegral", "[", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]]], "+", RowBox[List["2", " ", "a", " ", "z"]]]], ")"]]]], RowBox[List["2", " ", "a"]]], "]"]]]], RowBox[List["a", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["4", " ", "a", " ", "c"]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]], ")"]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18