
|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
http://functions.wolfram.com/01.19.21.0161.01
|
|

|

|

|

|
|
|
|

|

|

|

|
|

|

|

|

|

|
Integrate[Sinh[c z]/Sqrt[a z + b], z] == (-(1/(2 Sqrt[a] Sqrt[c])))
(Sqrt[Pi] (Erfi[(Sqrt[c] Sqrt[b + a z])/Sqrt[a]]
(-Cosh[(b c)/a] + Sinh[(b c)/a]) + Erf[(Sqrt[c] Sqrt[b + a z])/Sqrt[a]]
(Cosh[(b c)/a] + Sinh[(b c)/a])))
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a", " ", "z"]], "+", "b"]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox["c"]]]]]], RowBox[List["(", RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[SqrtBox["c"], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]]]]], SqrtBox["a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Erf", "[", FractionBox[RowBox[List[SqrtBox["c"], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]]]]], SqrtBox["a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]], "+", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]
|
|

|

|

|

|
|

|

|

|

|
|

|

|

|

|

|
|

|

|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> c </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mrow> <msqrt> <mi> a </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mi> c </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msqrt> </mrow> <msqrt> <mi> a </mi> </msqrt> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mi> a </mi> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> c </mi> </msqrt> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> Erf </ci> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <ci> a </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> c </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> c </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|

|

|

|

|

| 
| 
| 
| 
| | 
| 
| 
| 
| 
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], SqrtBox[RowBox[List[RowBox[List["a_", " ", "z_"]], "+", "b_"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[SqrtBox["c"], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]]]]], SqrtBox["a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], "+", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Erf", "[", FractionBox[RowBox[List[SqrtBox["c"], " ", SqrtBox[RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]]]]], SqrtBox["a"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]], "+", RowBox[List["Sinh", "[", FractionBox[RowBox[List["b", " ", "c"]], "a"], "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox["c"]]]]]]]]]] |
| 
| 
| 
| 
|
|

|

|

|

|
Date Added to functions.wolfram.com (modification date)
|
|

|

|

|

|

|
|

|

|

|

|
|
 |
|
|