|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.0205.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[a^(b Sqrt[z] + d z) Sinh[f z + g], z] ==
((1/4) ((b E^((b^2 Log[a]^2)/(4 f - 4 d Log[a])) Sqrt[Pi]
Erfi[(b Log[a] - 2 Sqrt[z] (f - d Log[a]))/(2 Sqrt[-f + d Log[a]])]
Log[a])/(-f + d Log[a])^(3/2) -
(b E^(2 g - (b^2 Log[a]^2)/(4 (f + d Log[a]))) Sqrt[Pi]
Erfi[(b Log[a] + 2 Sqrt[z] (f + d Log[a]))/(2 Sqrt[f + d Log[a]])]
Log[a])/(f + d Log[a])^(3/2) +
(2 a^(b Sqrt[z] + d z) (1/(f - d Log[a]) + E^(2 (g + f z))/
(f + d Log[a])))/E^(f z)))/E^g
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["4", " ", "f"]], "-", RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "-", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", "a", "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", "a", "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "f"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["f", "-", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["f", " ", "z"]]]], ")"]]]]], RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mo> - </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <msup> <mi> log </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <ci> a </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ln /> <ci> a </ci> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ln /> <ci> a </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "4"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List[RowBox[List["4", " ", "f"]], "-", RowBox[List["4", " ", "d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "-", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", "a", "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "f"]], "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "-", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "g"]], "-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], " ", SuperscriptBox[RowBox[List["Log", "[", "a", "]"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]], "+", RowBox[List["2", " ", SqrtBox["z"], " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]]], "]"]], " ", RowBox[List["Log", "[", "a", "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", RowBox[List["2", " ", SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]]]]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "f"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox["1", RowBox[List["f", "-", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["f", " ", "z"]]]], ")"]]]]], RowBox[List["f", "+", RowBox[List["d", " ", RowBox[List["Log", "[", "a", "]"]]]]]]]]], ")"]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|