Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function > Involving exp > Involving ab zr+esinh(c zr)





http://functions.wolfram.com/01.19.21.0225.01









  


  










Input Form





Integrate[a^(b z^r + e) Sinh[c z^r], z] == (-(1/(2 r))) (a^e z (-Gamma[1/r, z^r (c - b Log[a])]/ (z^r (c - b Log[a]))^r^(-1) + Gamma[1/r, (-z^r) (c + b Log[a])]/ ((-z^r) (c + b Log[a]))^r^(-1)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["a", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "r"]]], "+", "e"]]], RowBox[List["Sinh", "[", RowBox[List["c", " ", SuperscriptBox["z", "r"]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", "r"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["a", "e"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], "]"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <msup> <mi> a </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> e </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mi> e </mi> </msup> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <msup> <mi> z </mi> <mi> r </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mi> r </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> a </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> a </ci> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> e </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> a </ci> <ci> e </ci> </apply> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <ln /> <ci> a </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["a_", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "r_"]]], "+", "e_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", SuperscriptBox["z_", "r_"]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["a", "e"], " ", "z", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], "]"]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[SuperscriptBox["z", "r"], " ", RowBox[List["(", RowBox[List["c", "-", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]]]], "+", RowBox[List[RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["z", "r"]]], " ", RowBox[List["(", RowBox[List["c", "+", RowBox[List["b", " ", RowBox[List["Log", "[", "a", "]"]]]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]]]]]], ")"]]]], RowBox[List["2", " ", "r"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18