Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving exponential function > Involving exp > Involving ab zr+d z sinh(c zr+g)





http://functions.wolfram.com/01.19.21.0260.01









  


  










Input Form





Integrate[E^(b z^2 + d z) Sinh[c z^2 + g], z] == (1/(4 (b - c) (b + c))) (E^((2 b d^2 + c d^2)/(-4 b^2 + 4 c^2)) Sqrt[Pi] ((-Sqrt[b - c]) (b + c) E^((b d^2)/(4 b^2 - 4 c^2)) Erfi[(d + 2 (b - c) z)/(2 Sqrt[b - c])] (Cosh[g] - Sinh[g]) + (b - c) Sqrt[b + c] E^(((b + 2 c) d^2)/(4 (b - c) (b + c))) Erfi[(d + 2 (b + c) z)/(2 Sqrt[b + c])] (Cosh[g] + Sinh[g])))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]]]]], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["c", " ", SuperscriptBox["d", "2"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["c", "2"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["b", "-", "c"]]]]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["c", "2"]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "-", "c"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "c"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["d", "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "c"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> <mo> + </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> g </mi> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <ci> g </ci> </apply> <apply> <sinh /> <ci> g </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <cosh /> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <sinh /> <ci> g </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["d_", " ", "z_"]]]]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["2", " ", "b", " ", SuperscriptBox["d", "2"]]], "+", RowBox[List["c", " ", SuperscriptBox["d", "2"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SuperscriptBox["b", "2"]]], "+", RowBox[List["4", " ", SuperscriptBox["c", "2"]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SqrtBox[RowBox[List["b", "-", "c"]]]]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["b", " ", SuperscriptBox["d", "2"]]], RowBox[List[RowBox[List["4", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List["4", " ", SuperscriptBox["c", "2"]]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "-", "c"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "-", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "c"]]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", RowBox[List["2", " ", "c"]]]], ")"]], " ", SuperscriptBox["d", "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["d", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", "z"]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "c"]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["Cosh", "[", "g", "]"]], "+", RowBox[List["Sinh", "[", "g", "]"]]]], ")"]]]]]], ")"]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18