Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Arguments involving polynomials or algebraic functions and factors involving exponential functions > Involving exp > Involving ab zr+d z+e sinh(c zr+f z)





http://functions.wolfram.com/01.19.21.0477.01









  


  










Input Form





Integrate[E^(b Sqrt[z] + d z + e) Sinh[c Sqrt[z] + f z], z] == -(E^(e + (b - c) Sqrt[z] + (d - f) z)/(2 (d - f))) + E^(e + (b + c) Sqrt[z] + (d + f) z)/(2 (d + f)) + ((b - c) E^((b^2 - 2 b c + c^2 - 4 d e + 4 e f)/(-4 d + 4 f)) Sqrt[Pi] Erfi[(b - c + 2 (d - f) Sqrt[z])/(2 Sqrt[d - f])])/(4 (d - f)^(3/2)) - ((b + c) Sqrt[Pi] Erfi[(b + c + 2 (d + f) Sqrt[z])/(2 Sqrt[d + f])])/ (E^((b^2 + 2 b c + c^2 - 4 e (d + f))/(4 (d + f))) (4 (d + f)^(3/2)))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]]], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", "z"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], " ", "z"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", "b", " ", "c"]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "d", " ", "e"]], "+", RowBox[List["4", " ", "e", " ", "f"]]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["4", " ", "f"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f"]]]]]], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["2", " ", "b", " ", "c"]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "e", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f"]]]]]], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> <mo> &#8290; </mo> <mi> e </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mi> f </mi> </mrow> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> d </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> e </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> e </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <ci> e </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> e </ci> <ci> f </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> </apply> <ci> e </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> </apply> <ci> e </ci> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> b </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> e </ci> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> d </ci> <ci> f </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", "z"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]]]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List["e", "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], " ", "z"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "-", RowBox[List["2", " ", "b", " ", "c"]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "d", " ", "e"]], "+", RowBox[List["4", " ", "e", " ", "f"]]]], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "d"]], "+", RowBox[List["4", " ", "f"]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "-", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "-", "f"]]]]]], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", "f"]], ")"]], RowBox[List["3", "/", "2"]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["b", "2"], "+", RowBox[List["2", " ", "b", " ", "c"]], "+", SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "e", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["b", "+", "c", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["d", "+", "f"]]]]]], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", "f"]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18