|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.0780.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Cos[b Sqrt[z] + e]^m Sinh[c z], z] ==
((-(1/2))^m Binomial[m, m/2] Cosh[c z] (1 - Mod[m, 2]))/c +
I 2^(-1 - m) Sum[Binomial[m, s] ((1/((-I) c)^(3/2))
(-2 Sqrt[(-I) c] Cos[e m - 2 e s + (b m - 2 b s) Sqrt[z] - I c z] -
b Sqrt[2 Pi] (m - 2 s) (Cos[e m - 2 e s - (I (b m - 2 b s)^2)/(4 c)]
FresnelS[(b (m - 2 s) - 2 I c Sqrt[z])/(Sqrt[(-I) c] Sqrt[
2 Pi])] + FresnelC[(b (m - 2 s) - 2 I c Sqrt[z])/
(Sqrt[(-I) c] Sqrt[2 Pi])] Sin[e m - 2 e s -
(I (b m - 2 b s)^2)/(4 c)])) + (1/((-I) c)^(3/2))
(-2 Sqrt[(-I) c] Cos[e m - 2 e s - ((-b) m + 2 b s) Sqrt[z] +
I c z] - b Sqrt[2 Pi] (m - 2 s)
(Cos[e m - 2 e s + (I (b m - 2 b s)^2)/(4 c)]
FresnelS[(b (m - 2 s) + 2 I c Sqrt[z])/(Sqrt[(-I) c] Sqrt[
2 Pi])] - FresnelC[(b (m - 2 s) + 2 I c Sqrt[z])/
(Sqrt[(-I) c] Sqrt[2 Pi])] Sin[e m - 2 e s +
(I (b m - 2 b s)^2)/(4 c)]))),
{s, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", "e"]], "]"]], "m"], RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "m"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "c"], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", FractionBox["1", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], ")"]], RowBox[List["3", "/", "2"]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mrow> <msup> <mi> cos </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mi> m </mi> </msup> </mrow> <mi> c </mi> </mfrac> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <semantics> <mi> S </mi> <annotation encoding='Mathematica'> TagBox["S", FresnelS] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <semantics> <mi> C </mi> <annotation encoding='Mathematica'> TagBox["C", FresnelC] </annotation> </semantics> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> π </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sin </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <ci> e </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> m </ci> </apply> <apply> <power /> <ci> c </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <imaginaryi /> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <cos /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <ci> FresnelS </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <ci> FresnelC </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <pi /> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sin /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", "e_"]], "]"]], "m_"], " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox["1", "2"]]], ")"]], "m"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]]]], "c"], "+", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]]]], "]"]]]], "-", RowBox[List["b", " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cos", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]], " ", RowBox[List["FresnelS", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]]]], "-", RowBox[List[RowBox[List["FresnelC", "[", FractionBox[RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", SqrtBox["z"]]]]], RowBox[List[SqrtBox[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]]], " ", SqrtBox[RowBox[List["2", " ", "\[Pi]"]]]]]], "]"]], " ", RowBox[List["Sin", "[", RowBox[List[RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["b", " ", "m"]], "-", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], "2"]]], RowBox[List["4", " ", "c"]]]]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|