|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.0846.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Cos[b Sqrt[z] + d z + e]^m Sinh[c Sqrt[z] + f z + g], z] ==
Binomial[m, m/2] (1 - Mod[m, 2]) (1/(2^(m + 2) f^(3/2)))
(4 Sqrt[f] Cosh[g + c Sqrt[z] + f z] + c E^(-(c^2/(4 f)) - g) Sqrt[Pi]
(E^(c^2/(2 f)) Erf[(c + 2 f Sqrt[z])/(2 Sqrt[f])] -
E^(2 g) Erfi[(c + 2 f Sqrt[z])/(2 Sqrt[f])])) +
Sum[Binomial[m, s] (Cosh[g + I e m - 2 I e s + (c + I b m - 2 I b s)
Sqrt[z] + (f + I d m - 2 I d s) z]/(f + I d m - 2 I d s) +
Cosh[g - I e m + 2 I e s + (c - I b m + 2 I b s) Sqrt[z] +
(f - I d m + 2 I d s) z]/(f - I d m + 2 I d s) +
(1/4) Sqrt[Pi] (((-I) E^((-c^2 + 4 f (g + I e (m - 2 s)) -
2 I b c (m - 2 s) + (m - 2 s) (b^2 (m - 2 s) +
d (4 I g - 4 e m + 8 e s)))/(4 (f + I d (m - 2 s))))
((-I) c + b (m - 2 s)) Erfi[(c + I (b (m - 2 s) +
2 ((-I) f + d m - 2 d s) Sqrt[z]))/
(2 Sqrt[f + I d (m - 2 s)])])/(f + I d (m - 2 s))^(3/2) +
(I E^(g - I e m - (I (c - I b (m - 2 s))^2)/(4 I f + 4 d
(m - 2 s)) + 2 I e s) (I c + b (m - 2 s))
Erfi[(c - I (b (m - 2 s) + 2 (I f + d m - 2 d s) Sqrt[z]))/
(2 Sqrt[f - I d (m - 2 s)])])/(f - I d (m - 2 s))^(3/2) +
(E^((c^2 - 4 f (g - I e (m - 2 s)) - 2 I b c (m - 2 s) +
(m - 2 s) ((-b^2) (m - 2 s) + 4 d (I g + e m - 2 e s)))/
(4 (f - I d (m - 2 s)))) ((-I) c - b m + 2 b s)
Erfi[(I c + b (m - 2 s) + 2 (I f + d m - 2 d s) Sqrt[z])/
(2 Sqrt[f - I d (m - 2 s)])])/(f - I d (m - 2 s))^(3/2) +
(E^((c^2 - 4 f (g + I e (m - 2 s)) + 2 I b c (m - 2 s) +
(m - 2 s) ((-b^2) (m - 2 s) + 4 d ((-I) g + e m - 2 e s)))/
(4 (f + I d (m - 2 s)))) ((-I) c + b (m - 2 s))
Erfi[(I c - b (m - 2 s) + 2 (I f - d m + 2 d s) Sqrt[z])/
(2 Sqrt[f + I d (m - 2 s)])])/(f + I d (m - 2 s))^(3/2))),
{s, 0, Floor[(1/2) (-1 + m)]}]/2^m /; Element[m, Integers] && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SqrtBox["z"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], "m"], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], FractionBox["1", RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "2"]]], " ", SuperscriptBox["f", RowBox[List["3", "/", "2"]]]]]], RowBox[List["(", RowBox[List[RowBox[List["4", " ", SqrtBox["f"], " ", RowBox[List["Cosh", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "f"]]]]], "-", "g"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["c", "2"], RowBox[List["2", " ", "f"]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "f", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["f"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "f", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["f"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Cosh", "[", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]], " ", "z"]]]], "]"]], "/", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["Cosh", "[", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]], " ", "z"]]]], "]"]], "/", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["c", "2"]]], "+", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "g"]], "-", RowBox[List["4", " ", "e", " ", "m"]], "+", RowBox[List["8", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], "2"]]], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "f"]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "g"]], "+", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]], ")"]]]], "]"]]]], ")"]], "/", SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <msup> <mi> cos </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> + </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> f </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msqrt> <mi> f </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> g </mi> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mfrac> </mrow> <mo> - </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mi> erf </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> f </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> g </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> f </mi> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> ⁢ </mo> <mi> mod </mi> <mo> ⁢ </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mo> - </mo> <mi> m </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> ⌊ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> ⌋ </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> ⁢ </mo> <msqrt> <mi> π </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> ⅈ </mi> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> <mo> + </mo> <mi> g </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> f </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> g </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> g </mi> </mrow> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> erfi </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> g </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> m </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <cos /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> <ci> e </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <ci> f </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> f </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <cosh /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <ci> g </ci> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Erf </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> f </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> g </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> f </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> f </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <ci> c </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> g </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> e </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> f </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <apply> <plus /> <ci> g </ci> <apply> <times /> <ci> e </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> g </ci> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <ci> d </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <ci> c </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> f </ci> <apply> <plus /> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> d </ci> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> g </ci> </apply> <apply> <times /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> d </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <cosh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> s </ci> </apply> <apply> <times /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> s </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> s </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <cosh /> <apply> <plus /> <ci> g </ci> <apply> <times /> <imaginaryi /> <ci> e </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> s </ci> </apply> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> d </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SqrtBox["z_"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], "m_"], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c_", " ", SqrtBox["z_"]]], "+", RowBox[List["f_", " ", "z_"]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", SqrtBox["f"], " ", RowBox[List["Cosh", "[", RowBox[List["g", "+", RowBox[List["c", " ", SqrtBox["z"]]], "+", RowBox[List["f", " ", "z"]]]], "]"]]]], "+", RowBox[List["c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["c", "2"], RowBox[List["4", " ", "f"]]]]], "-", "g"]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["c", "2"], RowBox[List["2", " ", "f"]]]], " ", RowBox[List["Erf", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "f", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["f"]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "g"]]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["2", " ", "f", " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox["f"]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[SuperscriptBox["2", RowBox[List["m", "+", "2"]]], " ", SuperscriptBox["f", RowBox[List["3", "/", "2"]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List["-", "m"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Cosh", "[", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]], " ", "z"]]]], "]"]], RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]]], "+", FractionBox[RowBox[List["Cosh", "[", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]], "+", RowBox[List[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]], ")"]], " ", "z"]]]], "]"]], RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "d", " ", "s"]]]]], "+", RowBox[List[FractionBox["1", "4"], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[RowBox[List["-", SuperscriptBox["c", "2"]]], "+", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["b", "2"], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "g"]], "-", RowBox[List["4", " ", "e", " ", "m"]], "+", RowBox[List["8", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", "m"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], "2"]]], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "f"]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "e", " ", "s"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List["c", "-", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "-", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "g"]], "+", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "-", RowBox[List["b", " ", "m"]], "+", RowBox[List["2", " ", "b", " ", "s"]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["d", " ", "m"]], "-", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "-", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List[SuperscriptBox["c", "2"], "-", RowBox[List["4", " ", "f", " ", RowBox[List["(", RowBox[List["g", "+", RowBox[List["\[ImaginaryI]", " ", "e", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "c", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["b", "2"]]], " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["4", " ", "d", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "g"]], "+", RowBox[List["e", " ", "m"]], "-", RowBox[List["2", " ", "e", " ", "s"]]]], ")"]]]]]], ")"]]]]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c"]], "+", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c"]], "-", RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "f"]], "-", RowBox[List["d", " ", "m"]], "+", RowBox[List["2", " ", "d", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]]]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["f", "+", RowBox[List["\[ImaginaryI]", " ", "d", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]], ")"]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|