|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.1089.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[z^n Cos[b z^2 + d z + e] Sinh[c z^2 + f z], z] ==
((1/8) ((1/Sqrt[(-I) b - c]) E^((I d + f)^2/(4 (I b + c)))
Sum[2^(-n + q) ((-I) b - c)^(-(1/2) - n) (I d + f)^(n - q)
((-I) d - f - 2 I b z - 2 c z)^(1 + q)
((I (d - I f + 2 b z - 2 I c z)^2)/(b - I c))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, (I (d - I f + 2 b z - 2 I c z)^2)/
(4 (b - I c))], {q, 0, n}] + (1/Sqrt[I b - c])
E^(2 I e - (I (d + I f)^2)/(4 (b + I c)))
Sum[2^(-n + q) (I b - c)^(-(1/2) - n) ((-I) d + f)^(n - q)
(I (d + I f + 2 b z + 2 I c z))^(1 + q)
(-((I (d + I f + 2 b z + 2 I c z)^2)/(b + I c)))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, -((I (d + I f + 2 b z + 2 I c z)^2)/
(4 (b + I c)))], {q, 0, n}] - (1/Sqrt[(-I) b + c])
(E^((I (d + I f)^2)/(4 (b + I c)))
Sum[2^(-n + q) ((-I) b + c)^(-(1/2) - n) (I d - f)^(n - q)
((I (d + I f + 2 b z + 2 I c z)^2)/(b + I c))^((1/2) (-1 - q))
((-I) d + f - 2 I b z + 2 c z)^(1 + q) Binomial[n, q]
Gamma[(1 + q)/2, (I (d + I f + 2 b z + 2 I c z)^2)/(4 (b + I c))],
{q, 0, n}]) - (1/Sqrt[I b + c]) E^(2 I e - (I d + f)^2/(4 (I b + c)))
Sum[2^(-n + q) (I b + c)^(-(1/2) - n) ((-I) d - f)^(n - q)
(I d + f + 2 I b z + 2 c z)^(1 + q)
(-((I d + f + 2 I b z + 2 c z)^2/(I b + c)))^((1/2) (-1 - q))
Binomial[n, q] Gamma[(1 + q)/2, -((I d + f + 2 I b z + 2 c z)^2/
(4 (I b + c)))], {q, 0, n}]))/E^(I e) /;
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], RowBox[List["Cos", "[", RowBox[List[RowBox[List["b", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["d", " ", "z"]], "+", "e"]], "]"]], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "2"]]], "+", RowBox[List["f", " ", "z"]]]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "c"]]]], SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "-", "f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]], "]"]]]]]]]], "+", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]]]], "]"]]]]]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "-", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", "f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]], "]"]]]]]]]], ")"]]]], "-", RowBox[List[FractionBox["1", SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]]]], SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "-", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]]], "]"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> ⁢ </mo> <mrow> <mi> cos </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> f </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 8 </mn> </mfrac> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> - </mo> <mi> ⅈ </mi> </mrow> <mo> ⁢ </mo> <mi> e </mi> <mtext> </mtext> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mtext> </mtext> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <msqrt> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> </mrow> </mfrac> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> q </mi> <mo> - </mo> <mi> n </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> n </mi> </mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> f </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> f </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> <mtext> </mtext> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["n", Identity]], List[TagBox["q", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> f </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <cos /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> <ci> e </ci> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> f </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 8 </cn> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> </apply> <ci> e </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> c </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> q </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> q </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> n </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> f </ci> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> <apply> <plus /> <ci> n </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> f </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> d </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> q </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> q </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <apply> <plus /> <ci> q </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> f </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> c </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> ℕ </ci> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", RowBox[List["Cos", "[", RowBox[List[RowBox[List["b_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["d_", " ", "z_"]], "+", "e_"]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "2"]]], "+", RowBox[List["f_", " ", "z_"]]]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "8"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "e"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "-", "f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "-", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]], "]"]]]]]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "-", "c"]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]]]], "]"]]]]]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "-", "c"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "-", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "+", "f", "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["\[ImaginaryI]", " ", "f"]], "+", RowBox[List["2", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "c"]]]], ")"]]]]]]], "]"]]]]]]]], SqrtBox[RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b"]], "+", "c"]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "e"]], "-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f"]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "n"], RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "n"]], "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]], RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], "-", "n"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "d"]], "-", "f"]], ")"]], RowBox[List["n", "-", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], RowBox[List["1", "+", "q"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "q"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "q"]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox[RowBox[List["1", "+", "q"]], "2"], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "d"]], "+", "f", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "z"]], "+", RowBox[List["2", " ", "c", " ", "z"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]], ")"]]]]]]]]], "]"]]]]]]]], SqrtBox[RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b"]], "+", "c"]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|