|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.1335.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[(E^(p z) Sinh[d z])/(a + b Sinh[e z]^2 + c Cosh[e z]^2)^2, z] ==
(1/2) (((b + c) E^((-d + 2 e + p) z)
(((2 a - b + c) Hypergeometric2F1[1 + (-d + p)/(2 e), 1,
2 + (-d + p)/(2 e), ((b + c) E^(2 e z))/(-2 a + b - c -
2 Sqrt[(a - b) (a + c)])])/(2 a - b + c +
2 Sqrt[(a - b) (a + c)]) - ((2 a - b + c) Hypergeometric2F1[
1 + (-d + p)/(2 e), 1, 2 + (-d + p)/(2 e), ((b + c) E^(2 e z))/
(-2 a + b - c + 2 Sqrt[(a - b) (a + c)])])/
(2 a - b + c - 2 Sqrt[(a - b) (a + c)]) + 2 Sqrt[(a - b) (a + c)]
(Hypergeometric2F1[1 + (-d + p)/(2 e), 2, 2 + (-d + p)/(2 e),
((b + c) E^(2 e z))/(-2 a + b - c - 2 Sqrt[(a - b) (a + c)])]/
(2 a - b + c + 2 Sqrt[(a - b) (a + c)]) -
Hypergeometric2F1[1 + (-d + p)/(2 e), 2, 2 + (-d + p)/(2 e),
((b + c) E^(2 e z))/(-2 a + b - c + 2 Sqrt[(a - b) (a + c)])]/
(-2 a + b - c + 2 Sqrt[(a - b) (a + c)]))))/
(2 ((a - b) (a + c))^(3/2) (-d + 2 e + p)) -
((b + c) E^((d + 2 e + p) z)
(((2 a - b + c) Hypergeometric2F1[1 + (d + p)/(2 e), 1,
2 + (d + p)/(2 e), ((b + c) E^(2 e z))/(-2 a + b - c -
2 Sqrt[(a - b) (a + c)])])/(2 a - b + c +
2 Sqrt[(a - b) (a + c)]) - ((2 a - b + c) Hypergeometric2F1[
1 + (d + p)/(2 e), 1, 2 + (d + p)/(2 e), ((b + c) E^(2 e z))/
(-2 a + b - c + 2 Sqrt[(a - b) (a + c)])])/
(2 a - b + c - 2 Sqrt[(a - b) (a + c)]) + 2 Sqrt[(a - b) (a + c)]
(Hypergeometric2F1[1 + (d + p)/(2 e), 2, 2 + (d + p)/(2 e),
((b + c) E^(2 e z))/(-2 a + b - c - 2 Sqrt[(a - b) (a + c)])]/
(2 a - b + c + 2 Sqrt[(a - b) (a + c)]) -
Hypergeometric2F1[1 + (d + p)/(2 e), 2, 2 + (d + p)/(2 e),
((b + c) E^(2 e z))/(-2 a + b - c + 2 Sqrt[(a - b) (a + c)])]/
(-2 a + b - c + 2 Sqrt[(a - b) (a + c)]))))/
(2 ((a - b) (a + c))^(3/2) (d + 2 e + p)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]], "-", RowBox[List[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]], ")"]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mi> p </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> cosh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> p </mi> <mo> - </mo> <mi> d </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["p", "-", "d"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mrow> <mi> d </mi> <mo> + </mo> <mi> p </mi> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> - </mo> <mi> c </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mi> c </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <apply> <cosh /> <apply> <times /> <ci> e </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> d </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <ci> a </ci> <ci> c </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> e </ci> </apply> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["d_", " ", "z_"]], "]"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]], "+", RowBox[List["c_", " ", SuperscriptBox[RowBox[List["Cosh", "[", RowBox[List["e_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List[RowBox[List["-", "d"]], "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "d"]], "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "-", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]], "-", FractionBox[RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox[RowBox[List["d", "+", "p"]], RowBox[List["2", " ", "e"]]]]], ",", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "e", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], "]"]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", "b", "-", "c", "+", RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]]]]]]]]]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List["a", "+", "c"]], ")"]]]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["2", " ", "e"]], "+", "p"]], ")"]]]]]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|