Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving products of the direct function > Involving products of two direct functions > Involving sinh(a zr) sinh(c zr+g)





http://functions.wolfram.com/01.19.21.1500.01









  


  










Input Form





Integrate[Sinh[b z^r] Sinh[c z^r + g], z] == (-(1/(4 r))) (z ((E^g Gamma[1/r, (-b - c) z^r])/((-b - c) z^r)^r^(-1) - (E^g Gamma[1/r, (b - c) z^r])/((b - c) z^r)^r^(-1) - Gamma[1/r, (-b + c) z^r]/(E^g ((-b + c) z^r)^r^(-1)) + Gamma[1/r, (b + c) z^r]/(E^g ((b + c) z^r)^r^(-1))))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b", " ", SuperscriptBox["z", "r"]]], "]"]], RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c", " ", SuperscriptBox["z", "r"]]], "+", "g"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["4", " ", "r"]]]]], RowBox[List["(", RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> + </mo> <mi> g </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> r </mi> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mi> g </mi> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mi> g </mi> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> g </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mi> g </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> / </mo> <mi> r </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mfrac> <mn> 1 </mn> <mi> r </mi> </mfrac> <mo> , </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> c </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> z </mi> <mi> r </mi> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <sinh /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <ci> g </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> r </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <ci> g </ci> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <ci> g </ci> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> c </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> g </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <ci> r </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> c </ci> </apply> <apply> <power /> <ci> z </ci> <ci> r </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sinh", "[", RowBox[List["b_", " ", SuperscriptBox["z_", "r_"]]], "]"]], " ", RowBox[List["Sinh", "[", RowBox[List[RowBox[List["c_", " ", SuperscriptBox["z_", "r_"]]], "+", "g_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", "g"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List["b", "-", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", "g"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "/", "r"]]], " ", RowBox[List["Gamma", "[", RowBox[List[FractionBox["1", "r"], ",", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "c"]], ")"]], " ", SuperscriptBox["z", "r"]]]]], "]"]]]]]], ")"]]]], RowBox[List["4", " ", "r"]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18