|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.1701.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sinh[d z]/(a + b Sinh[c z]^2)^2, z] ==
(-((1/(2 c - d)) (E^((2 c - d) z) ((2 a - b) (-2 a + 2 Sqrt[a] Sqrt[a - b] +
b) Hypergeometric2F1[1 - d/(2 c), 1, 2 - d/(2 c),
(b E^(2 c z))/(-2 a - 2 Sqrt[a] Sqrt[a - b] + b)] +
(2 a - b) (2 a + 2 Sqrt[a] Sqrt[a - b] - b) Hypergeometric2F1[
1 - d/(2 c), 1, 2 - d/(2 c), (b E^(2 c z))/
(-2 a + 2 Sqrt[a] Sqrt[a - b] + b)] +
2 Sqrt[a] ((2 a^(3/2) - 2 a Sqrt[a - b] - 2 Sqrt[a] b + Sqrt[a - b] b)
Hypergeometric2F1[1 - d/(2 c), 2, 2 - d/(2 c), (b E^(2 c z))/
(-2 a - 2 Sqrt[a] Sqrt[a - b] + b)] +
(-2 a^(3/2) - 2 a Sqrt[a - b] + 2 Sqrt[a] b + Sqrt[a - b] b)
Hypergeometric2F1[1 - d/(2 c), 2, 2 - d/(2 c), (b E^(2 c z))/
(-2 a + 2 Sqrt[a] Sqrt[a - b] + b)])))) +
(1/(2 c + d)) (E^((2 c + d) z) ((2 a - b) (-2 a + 2 Sqrt[a] Sqrt[a - b] +
b) Hypergeometric2F1[1 + d/(2 c), 1, 2 + d/(2 c),
(b E^(2 c z))/(-2 a - 2 Sqrt[a] Sqrt[a - b] + b)] +
(2 a - b) (2 a + 2 Sqrt[a] Sqrt[a - b] - b) Hypergeometric2F1[
1 + d/(2 c), 1, 2 + d/(2 c), (b E^(2 c z))/
(-2 a + 2 Sqrt[a] Sqrt[a - b] + b)] +
2 Sqrt[a] ((2 a^(3/2) - 2 a Sqrt[a - b] - 2 Sqrt[a] b + Sqrt[a - b] b)
Hypergeometric2F1[1 + d/(2 c), 2, 2 + d/(2 c),
(b E^(2 c z))/(-2 a - 2 Sqrt[a] Sqrt[a - b] + b)] +
(-2 a^(3/2) - 2 a Sqrt[a - b] + 2 Sqrt[a] b + Sqrt[a - b] b)
Hypergeometric2F1[1 + d/(2 c), 2, 2 + d/(2 c),
(b E^(2 c z))/(-2 a + 2 Sqrt[a] Sqrt[a - b] + b)]))))/
(4 a^(3/2) (a - b)^(3/2) b)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["d", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]], "+", RowBox[List[FractionBox["1", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d"]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["4", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", "b"]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> + </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "1"]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List[FractionBox["d", RowBox[List["2", " ", "c"]]], "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> d </mi> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> ⅇ </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> <mo> - </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> a </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> , </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mfrac> <mi> d </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> </mrow> </mfrac> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> ⅇ </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> </msup> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mi> a </mi> </msqrt> </mrow> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], ",", TagBox["2", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox["a"]]], "+", "b"]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> d </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <ci> d </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> d </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> d </ci> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> b </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["d_", " ", "z_"]], "]"]], SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "-", "d"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "-", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c"]], "-", "d"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c"]], "+", "d"]], ")"]], " ", "z"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "-", "b"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", "b"]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "1", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "-", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]]]], "-", RowBox[List["2", " ", "a", " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", "b"]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", "b"]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", "2", ",", RowBox[List["2", "+", FractionBox["d", RowBox[List["2", " ", "c"]]]]], ",", FractionBox[RowBox[List["b", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "c", " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "a"]], "+", RowBox[List["2", " ", SqrtBox["a"], " ", SqrtBox[RowBox[List["a", "-", "b"]]]]], "+", "b"]]]]], "]"]]]]]], ")"]]]]]], ")"]]]], RowBox[List[RowBox[List["2", " ", "c"]], "+", "d"]]]]], RowBox[List["4", " ", SuperscriptBox["a", RowBox[List["3", "/", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", "b"]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|