|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.1738.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sinh[c z]/((d + e Sinh[c z]) Sqrt[a + b Sinh[c z]]), z] ==
-2 I (((-b) d + a e) EllipticF[
I ArcSinh[Sqrt[1/(-a + I b)] Sqrt[a + b Sinh[c z]]],
(a - I b)/(a + I b)] + b d EllipticPi[((a - I b) e)/((-b) d + a e),
I ArcSinh[Sqrt[1/(-a + I b)] Sqrt[a + b Sinh[c z]]],
(a - I b)/(a + I b)]) Sech[c z] Sqrt[(b - I b Sinh[c z])/(I a + b)]
(Sqrt[(b + I b Sinh[c z])/((-I) a + b)]/(Sqrt[1/(-a + I b)] b c e
((-b) d + a e)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]], "+", RowBox[List["b", " ", "d", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]]]], " ", RowBox[List[SqrtBox[FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]]]], "/", RowBox[List["(", RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", "b", " ", "c", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]], ")"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mtext> </mtext> <mrow> <mi> sech </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> a </mi> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ❘ </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> <mtext> </mtext> </mrow> </mrow> </mfrac> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> b </mi> </mrow> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> </mrow> </mfrac> </msqrt> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> b </ci> <ci> c </ci> <ci> e </ci> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <ci> b </ci> <ci> d </ci> <apply> <ci> EllipticPi </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> b </ci> </apply> <ci> b </ci> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], RowBox[List[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]], ")"]], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]], "+", RowBox[List["b", " ", "d", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], ")"]], " ", "e"]], RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]]], ",", RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]], RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", RowBox[List["Sech", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["b", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]]]], " ", SqrtBox[FractionBox[RowBox[List["b", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "a"]], "+", "b"]]]]]], RowBox[List[SqrtBox[FractionBox["1", RowBox[List[RowBox[List["-", "a"]], "+", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]], " ", "b", " ", "c", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|