Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving functions of the direct function > Involving algebraic functions of the direct function > Involving (a+b sinh(2c z))beta sinhv(c z)





http://functions.wolfram.com/01.19.21.1754.01









  


  










Input Form





Integrate[Sqrt[a + b Sinh[2 c z]] Sinh[c z]^4, z] == (2 (23 I a b EllipticF[(1/4) (Pi - 4 I c z), -((2 I b)/(a - I b))] Sqrt[(a + b Sinh[2 c z])/(a - I b)] + ((-2 a^2 + 21 b^2)/b) ((I a + b) EllipticE[(1/4) (Pi - 4 I c z), -((2 I b)/(a - I b))] - I a EllipticF[(1/4) (Pi - 4 I c z), -((2 I b)/(a - I b))]) Sqrt[(a + b Sinh[2 c z])/(a - I b)] - ((20 a (1 + Cosh[c z])^2)/Sqrt[Sech[(c z)/2]^4 (a + b Sinh[2 c z])]) ((a + b Sinh[2 c z])/(1 + Cosh[c z])^2)^(3/2)) + (a + b Sinh[2 c z]) (2 a Cosh[2 c z] - 20 b Sinh[2 c z] + 3 b Sinh[4 c z]))/(120 b c Sqrt[a + b Sinh[2 c z]])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "4"], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "+", RowBox[List[FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["21", " ", SuperscriptBox["b", "2"]]]]], "b"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List["20", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"], " "]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]], ")"]], RowBox[List["3", "/", "2"]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["20", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]], "/", RowBox[List["(", RowBox[List["120", " ", "b", " ", "c", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 120 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <msqrt> <mrow> <mrow> <msup> <mi> sech </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mfrac> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mn> 23 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mrow> <mn> 21 </mn> <mo> &#8290; </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> </mrow> <mi> b </mi> </mfrac> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> </mrow> </mrow> <mtext> </mtext> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 4 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> &#960; </mi> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> a </mi> <mo> &#8290; </mo> <mrow> <mi> cosh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 20 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 120 </cn> <ci> b </ci> <ci> c </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <sech /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <cosh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 23 </cn> <ci> a </ci> <ci> b </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <ci> EllipticF </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <imaginaryi /> <ci> a </ci> </apply> </apply> <apply> <ci> EllipticE </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> a </ci> <apply> <ci> EllipticF </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 4 </cn> <apply> <plus /> <pi /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 20 </cn> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> <apply> <sinh /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "4"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["23", " ", "\[ImaginaryI]", " ", "a", " ", "b", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", SuperscriptBox["a", "2"]]], "+", RowBox[List["21", " ", SuperscriptBox["b", "2"]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "a"]], "+", "b"]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List[FractionBox["1", "4"], " ", RowBox[List["(", RowBox[List["\[Pi]", "-", RowBox[List["4", " ", "\[ImaginaryI]", " ", "c", " ", "z"]]]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["2", " ", "\[ImaginaryI]", " ", "b"]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]]], "]"]]]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b"]]]]]]]], "b"], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["20", " ", "a", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]]], ")"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cosh", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]], ")"]], RowBox[List["3", "/", "2"]]]]], SqrtBox[RowBox[List[SuperscriptBox[RowBox[List["Sech", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "-", RowBox[List["20", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], "+", RowBox[List["3", " ", "b", " ", RowBox[List["Sinh", "[", RowBox[List["4", " ", "c", " ", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List["120", " ", "b", " ", "c", " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18