|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.21.1824.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[1/((d + e Sinh[c z]^2)^2 Sqrt[a + b Sinh[c z]^2]), z] ==
-(I Sqrt[(2 a - b + b Cosh[2 c z])/a] (2 EllipticPi[e/d, I c z, b/a] +
(a d e (EllipticE[I c z, b/a] - (((-b) d + a e) EllipticF[I c z, b/a])/
(a e) + (d (-(b/a) + e^2/d^2) EllipticPi[e/d, I c z, b/a])/e -
(I e Sqrt[1 + (b Sinh[c z]^2)/a] Sinh[2 c z])/
(2 (d + e Sinh[c z]^2))))/((d - e) ((-b) d + a e))))/
(2 c d^2 Sqrt[2 a - b + b Cosh[2 c z]])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["e", "d"], ",", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], RowBox[List["a", " ", "e"]]], "+", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["b", "a"]]], "+", FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["e", "d"], ",", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], "e"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "e", " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "a"]]]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]], ")"]]]]]], ")"]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", SuperscriptBox["d", "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> + </mo> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> e </mi> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> d </mi> <mo> - </mo> <mi> e </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> d </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> d </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> e </mi> <mn> 2 </mn> </msup> <msup> <mi> d </mi> <mn> 2 </mn> </msup> </mfrac> <mo> - </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> Π </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mi> e </mi> <mi> d </mi> </mfrac> <mo> ; </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> e </mi> </mfrac> <mo> - </mo> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> <mo> - </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> d </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ❘ </mo> <mfrac> <mi> b </mi> <mi> a </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> a </mi> <mo> ⁢ </mo> <mi> e </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> e </mi> <mo> ⁢ </mo> <msqrt> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> <mo> + </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> e </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> sinh </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> d </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mi> d </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mi> b </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> cosh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> d </ci> <apply> <times /> <ci> e </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> EllipticPi </ci> <apply> <times /> <ci> e </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> d </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> e </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> a </ci> <ci> d </ci> <ci> e </ci> <apply> <plus /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <ci> d </ci> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> e </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> EllipticPi </ci> <apply> <times /> <ci> e </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> e </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <ci> d </ci> </apply> </apply> </apply> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <ci> c </ci> <ci> z </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> a </ci> <ci> e </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> e </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sinh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <ci> e </ci> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> d </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <ci> d </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <ci> b </ci> <apply> <cosh /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox["1", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["d_", "+", RowBox[List["e_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "2"], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], "a"]], " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["e", "d"], ",", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], "+", FractionBox[RowBox[List["a", " ", "d", " ", "e", " ", RowBox[List["(", RowBox[List[RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], RowBox[List["a", " ", "e"]]], "+", FractionBox[RowBox[List["d", " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox["b", "a"]]], "+", FractionBox[SuperscriptBox["e", "2"], SuperscriptBox["d", "2"]]]], ")"]], " ", RowBox[List["EllipticPi", "[", RowBox[List[FractionBox["e", "d"], ",", RowBox[List["\[ImaginaryI]", " ", "c", " ", "z"]], ",", FractionBox["b", "a"]]], "]"]]]], "e"], "-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "e", " ", SqrtBox[RowBox[List["1", "+", FractionBox[RowBox[List["b", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]], "a"]]]], " ", RowBox[List["Sinh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["e", " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]]]]]]], ")"]]]], RowBox[List[RowBox[List["(", RowBox[List["d", "-", "e"]], ")"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "b"]], " ", "d"]], "+", RowBox[List["a", " ", "e"]]]], ")"]]]]]]], ")"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox["d", "2"], " ", SqrtBox[RowBox[List[RowBox[List["2", " ", "a"]], "-", "b", "+", RowBox[List["b", " ", RowBox[List["Cosh", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|