Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving functions of the direct function and exponential function > Involving products of powers of two direct functions and exponential function > Involving product of power of the direct function, the direct function and exponential function > Involving ep z sinh(b z)sinhv(c zr)





http://functions.wolfram.com/01.19.21.2211.01









  


  










Input Form





Integrate[E^(p z) Sinh[b z] Sinh[c Sqrt[z]]^v, z] == (2^(-1 - v) (-(E^((-b + p) z)/(-b + p)) + E^((b + p) z)/(b + p)) Binomial[v, v/2] (1 - Mod[v, 2]))/I^v + 2^(-2 - v) Sum[(-1)^k Binomial[v, k] (-((2 E^((-(2 c k - c v)) Sqrt[z] + (-b + p) z))/(-b + p)) + (-1)^v ((2 E^((2 c k - c v) Sqrt[z] + (b + p) z))/(b + p)) - (-1)^v ((2 E^((-(-2 c k + c v)) Sqrt[z] + (-b + p) z))/(-b + p)) + (2 E^((-2 c k + c v) Sqrt[z] + (b + p) z))/(b + p) + (Sqrt[Pi] c (2 k - v) (Erfi[(c (2 k - v) + 2 (b - p) Sqrt[z])/ (2 Sqrt[-b + p])]/((-b + p) Sqrt[-b + p])))/ E^((-2 c k + c v)^2/(4 (-b + p))) + ((-1)^v Sqrt[Pi] c (2 k - v) (Erfi[(c (2 k - v) + 2 (b + p) Sqrt[z])/(2 Sqrt[b + p])]/ ((-b - p) Sqrt[b + p])))/E^((2 c k - c v)^2/(4 (b + p))) + (c Sqrt[Pi] (-2 k + v) (Erfi[(c (2 k - v) - 2 (b + p) Sqrt[z])/ (2 Sqrt[b + p])]/((b + p) Sqrt[b + p])))/ E^((c^2 (-2 k + v)^2)/(4 (b + p))) + (c (-1)^v Sqrt[Pi] (-2 k + v) (Erfi[(c (-2 k + v) - 2 (-b + p) Sqrt[z])/(2 Sqrt[-b + p])]/ ((-b + p) Sqrt[-b + p])))/E^((c^2 (-2 k + v)^2)/(4 (-b + p)))), {k, 0, Floor[(1/2) (-1 + v)]}] /; Element[v, Integers] && v > 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], RowBox[List["Sinh", "[", RowBox[List["b", " ", "z"]], "]"]], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", SqrtBox["z"]]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]], RowBox[List["b", "+", "p"]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", " ", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["b", "+", "p"]]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["b", "+", "p"]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", "c", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], " ", RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], ")"]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", "c", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], " ", RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "p"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "p"]]]]], ")"]]]]]], "+", RowBox[List["c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", " ", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "p"]]]]], ")"]]]]]], "+", RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List[RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]], "]"]], "/", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], ")"]]]]]]]], ")"]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <msup> <mi> &#8520; </mi> <mrow> <mo> - </mo> <mi> v </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> <mo> - </mo> <mfrac> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> b </mi> </mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> c </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> erfi </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> v </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> &#960; </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> </msup> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mrow> <msqrt> <mi> z </mi> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> k </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> z </mi> </mrow> </mrow> </msup> </mrow> <mrow> <mi> b </mi> <mo> + </mo> <mi> p </mi> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <ci> z </ci> </apply> </apply> <apply> <sinh /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <imaginaryi /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> c </ci> <apply> <power /> <exponentiale /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Erfi </ci> <apply> <times /> <apply> <plus /> <apply> <times /> <ci> c </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <ci> z </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <exponentiale /> <apply> <plus /> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> k </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> b </ci> <ci> p </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", RowBox[List["Sinh", "[", RowBox[List["b_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", SqrtBox["z_"]]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "v"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]], RowBox[List["b", "+", "p"]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "2"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]]]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]]]]]], ")"]]]], RowBox[List["b", "+", "p"]]], "-", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", RowBox[List["(", RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", "z"]]]]]]], ")"]]]], RowBox[List[RowBox[List["-", "b"]], "+", "p"]]], "+", FractionBox[RowBox[List["2", " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]], "+", RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", "z"]]]]]]], RowBox[List["b", "+", "p"]]], "+", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "c", " ", "k"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "-", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]], "+", FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "c", " ", "k"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "-", "p"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "+", FractionBox[RowBox[List["c", " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "k"]], "-", "v"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List["b", "+", "p"]], ")"]], " ", SqrtBox[RowBox[List["b", "+", "p"]]]]]], "+", FractionBox[RowBox[List["c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["c", "2"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], "2"]]], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]]]]]]]], " ", SqrtBox["\[Pi]"], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", RowBox[List["Erfi", "[", FractionBox[RowBox[List[RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox["z"]]]]], RowBox[List["2", " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]], "]"]]]], RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "b"]], "+", "p"]], ")"]], " ", SqrtBox[RowBox[List[RowBox[List["-", "b"]], "+", "p"]]]]]]]], ")"]]]]]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18