| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.19.21.2685.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[Cos[d + c z]^\[Mu] Sinh[a z]^v, z] == 
  (I/2)^v Cos[d + c z]^\[Mu] 
   (-((1/(c \[Mu])) ((I Binomial[v, v/2] Hypergeometric2F1[-(\[Mu]/2), 
         -\[Mu], 1 - \[Mu]/2, -E^(2 I (d + c z))] (-1 + Mod[v, 2]))/
       (1 + E^(2 I (d + c z)))^\[Mu])) + 
    Sum[(-1)^k Binomial[v, k] ((E^(I Pi v + 2 a k z - a v z) 
          Hypergeometric2F1[(I (2 a k - a v + I c \[Mu]))/(2 c), -\[Mu], 
           (I (2 a k - a v + I c (-2 + \[Mu])))/(2 c), -E^(-2 I (d + c z))])/
         (2 a k - a v + I c \[Mu]) - (E^(a (-2 k + v) z) Hypergeometric2F1[
           (I (a (-2 k + v) + I c \[Mu]))/(2 c), -\[Mu], 
           (I (a (-2 k + v) + I c (-2 + \[Mu])))/(2 c), -E^(-2 I (d + c z))])/
         (2 a k - a v - I c \[Mu])), {k, 0, Floor[(1/2) (-1 + v)]}]/
     (I^v (1 + E^(-2 I (d + c z)))^\[Mu])) /; Element[v, Integers] && v > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], "\[Mu]"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["a", " ", "z"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "v"], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], "\[Mu]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List[FractionBox["1", RowBox[List["c", " ", "\[Mu]"]]], RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List["1", "-", FractionBox["\[Mu]", "2"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], ")"]]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "+", RowBox[List["2", " ", "a", " ", "k", " ", "z"]], "-", RowBox[List["a", " ", "v", " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], ")"]], "/", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]]]], ")"]]]]]]]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <mrow>  <msup>  <mi> cos </mi>  <mi> μ </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mi> v </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mfrac>  <mi> ⅈ </mi>  <mn> 2 </mn>  </mfrac>  <mo> ) </mo>  </mrow>  <mi> v </mi>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> cos </mi>  <mi> μ </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  </msup>  </mrow>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mi> μ </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <mfrac>  <mi> μ </mi>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["-", FractionBox["\[Mu]", "2"]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Mu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", FractionBox["\[Mu]", "2"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <msup>  <mi> ⅈ </mi>  <mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> + </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mi> a </mi>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> μ </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Mu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["c", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "2"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  <mo> - </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </mrow>  </mfrac>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mrow>  <msub>  <mo>   </mo>  <mn> 2 </mn>  </msub>  <msub>  <mi> F </mi>  <mn> 1 </mn>  </msub>  </mrow>  <mo> ⁡ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> μ </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> , </mo>  <mrow>  <mo> - </mo>  <mi> μ </mi>  </mrow>  </mrow>  <mo> ; </mo>  <mfrac>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> μ </mi>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> c </mi>  </mrow>  </mfrac>  <mo> ; </mo>  <mrow>  <mo> - </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> d </mi>  <mo> + </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["v", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], ",", TagBox[RowBox[List["-", "\[Mu]"]], Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List["v", "-", RowBox[List["2", " ", "k"]]]], ")"]]]], "+", RowBox[List["c", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["\[Mu]", "-", "2"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation>  </semantics>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mi> v </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <apply>  <cos />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> μ </ci>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <apply>  <times />  <imaginaryi />  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <ci> v </ci>  </apply>  <apply>  <power />  <apply>  <cos />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> μ </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <ci> c </ci>  <ci> μ </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> μ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> μ </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <imaginaryi />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> k </ci>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> a </ci>  </apply>  <ci> z </ci>  <ci> v </ci>  </apply>  <apply>  <times />  <imaginaryi />  <pi />  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> k </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> μ </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <plus />  <ci> μ </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> μ </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <ci> Hypergeometric2F1 </ci>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> μ </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> μ </ci>  </apply>  <apply>  <times />  <imaginaryi />  <apply>  <plus />  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <ci> c </ci>  <imaginaryi />  <apply>  <plus />  <ci> μ </ci>  <cn type='integer'> -2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> c </ci>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> -2 </cn>  <imaginaryi />  <apply>  <plus />  <ci> d </ci>  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <in />  <ci> v </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d_", "+", RowBox[List["c_", " ", "z_"]]]], "]"]], "\[Mu]_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["a_", " ", "z_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], "v"], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], "]"]], "\[Mu]"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["-", FractionBox["\[Mu]", "2"]]], ",", RowBox[List["-", "\[Mu]"]], ",", RowBox[List["1", "-", FractionBox["\[Mu]", "2"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], RowBox[List["c", " ", "\[Mu]"]]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", RowBox[List["-", "v"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]], ")"]], RowBox[List["-", "\[Mu]"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "+", RowBox[List["2", " ", "a", " ", "k", " ", "z"]], "-", RowBox[List["a", " ", "v", " ", "z"]]]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]]], "-", FractionBox[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]], " ", "z"]]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", "\[Mu]"]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "v"]], ")"]]]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", "\[Mu]"]], ")"]]]]]], ")"]]]], RowBox[List["2", " ", "c"]]], ",", RowBox[List["-", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["d", "+", RowBox[List["c", " ", "z"]]]], ")"]]]]]]]]], "]"]]]], RowBox[List[RowBox[List["2", " ", "a", " ", "k"]], "-", RowBox[List["a", " ", "v"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "\[Mu]"]]]]]]], ")"]]]]]]]]]], ")"]]]], "/;", RowBox[List[RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |