| |  
 |  | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | http://functions.wolfram.com/01.19.21.3158.01 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Integrate[E^(p z) Sin[c z]^m Sinh[b + a z]^v, z] == 
  ((I^v 2^(-m - v))/p) E^(p z) Binomial[m, m/2] Binomial[v, v/2] 
    (1 - Mod[m, 2]) (1 - Mod[v, 2]) - 2^(-m - v) Binomial[v, v/2] 
    (1 - Mod[v, 2]) Sum[(-1)^k E^((1/2) I Pi (-m + v)) 
      (E^(I m Pi - (-2 I c k + I c m - p) z)/(-2 I c k + I c m - p) + 
       1/(E^(((-I) c (-2 k + m) - p) z) ((-I) c (-2 k + m) - p))) 
      Binomial[m, k], {k, 0, Floor[(1/2) (-1 + m)]}] - 
   2^(-m - v) Binomial[m, m/2] (1 - Mod[m, 2]) 
    Sum[(-1)^s E^(-2 b s - b v) (E^(4 b s + I Pi v - (-p - 2 a s + a v) z)/
        (-p - 2 a s + a v) + E^(2 b v - (-p - a (-2 s + v)) z)/
        (-p - a (-2 s + v))) Binomial[v, s], {s, 0, Floor[(1/2) (-1 + v)]}] - 
   2^(-m - v) Sum[(-1)^k Binomial[m, k] 
      Sum[(-1)^s E^(-((I m Pi)/2) - 2 b s - b v) 
        (E^(2 b v) (1/(E^((2 I c k - I c m - p + 2 a s - a v) z) 
             (2 I c k - I c m - p + 2 a s - a v)) + 
           E^(I m Pi - (-2 I c k + I c m - p + 2 a s - a v) z)/
            (-2 I c k + I c m - p + 2 a s - a v)) + 
         E^(4 b s + I Pi v - (2 I c k - I c m - p - 2 a s + a v) z)/
          (2 I c k - I c m - p - 2 a s + a v) + 
         E^(I m Pi + 4 b s + I Pi v - (-2 I c k + I c m - p - 2 a s + a v) z)/
          (-2 I c k + I c m - p - 2 a s + a v)) Binomial[v, s], 
       {s, 0, Floor[(1/2) (-1 + v)]}], {k, 0, Floor[(1/2) (-1 + m)]}] /; 
 Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0 | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 | | Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], "  ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], "m"], SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b", "+", RowBox[List["a", " ", "z"]]]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[ImaginaryI]", "v"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]]]], "p"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "v"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p"]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p"]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", "p"]], ")"]]]], " ", "z"]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", "p"]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "2"]]], "-", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b", " ", "v"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]], " ", "z"]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]]]]], ")"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]]]]]]]] | 
 |  
 |  
 |  
 |  
 |  
 |  |   
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  
 |  
 | | 
   <math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'>  <semantics>  <mrow>  <mrow>  <mrow>  <mo> ∫ </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sin </mi>  <mi> m </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <msup>  <mi> sinh </mi>  <mi> v </mi>  </msup>  <mo> ( </mo>  <mrow>  <mi> b </mi>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ⅆ </mo>  <mi> z </mi>  </mrow>  </mrow>  </mrow>  <mo> ⩵ </mo>  <mrow>  <mfrac>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <msup>  <mi> ⅈ </mi>  <mi> v </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mi> p </mi>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mi> p </mi>  </mfrac>  <mo> - </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> v </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox[FractionBox["v", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> v </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mrow>  <mrow>  <mo> - </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mfrac>  <mi> m </mi>  <mn> 2 </mn>  </mfrac>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox[FractionBox["m", "2"], Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mn> 1 </mn>  <mo> - </mo>  <semantics>  <mrow>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> mod </mi>  <mo> ⁢ </mo>  <mn> 2 </mn>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </annotation-xml>  </semantics>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mo> - </mo>  <mi> p </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  <mo> - </mo>  <mrow>  <msup>  <mn> 2 </mn>  <mrow>  <mrow>  <mo> - </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> k </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> m </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> k </mi>  </msup>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> m </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> k </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity]], List[TagBox["k", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  <mo> ⁢ </mo>  <mrow>  <munderover>  <mo> ∑ </mo>  <mrow>  <mi> s </mi>  <mo> = </mo>  <mn> 0 </mn>  </mrow>  <mrow>  <mo> ⌊ </mo>  <mfrac>  <mrow>  <mi> v </mi>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mn> 2 </mn>  </mfrac>  <mo> ⌋ </mo>  </mrow>  </munderover>  <mrow>  <msup>  <mrow>  <mo> ( </mo>  <mrow>  <mo> - </mo>  <mn> 1 </mn>  </mrow>  <mo> ) </mo>  </mrow>  <mi> s </mi>  </msup>  <mo> ⁢ </mo>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mfrac>  <mn> 1 </mn>  <mn> 2 </mn>  </mfrac>  </mrow>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <msup>  <mi> ⅇ </mi>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </msup>  <mo> ⁢ </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mo> - </mo>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </msup>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> m </mi>  <mo> ⁢ </mo>  <mi> π </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> + </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  </mrow>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> + </mo>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mrow>  <mo> - </mo>  <mn> 2 </mn>  </mrow>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  <mo> + </mo>  <mfrac>  <msup>  <mi> ⅇ </mi>  <mrow>  <mrow>  <mn> 4 </mn>  <mo> ⁢ </mo>  <mi> b </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> π </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  <mo> - </mo>  <mrow>  <mrow>  <mo> ( </mo>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <mi> z </mi>  </mrow>  </mrow>  </msup>  <mrow>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> k </mi>  </mrow>  <mo> - </mo>  <mrow>  <mi> ⅈ </mi>  <mo> ⁢ </mo>  <mi> c </mi>  <mo> ⁢ </mo>  <mi> m </mi>  </mrow>  <mo> - </mo>  <mi> p </mi>  <mo> - </mo>  <mrow>  <mn> 2 </mn>  <mo> ⁢ </mo>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> s </mi>  </mrow>  <mo> + </mo>  <mrow>  <mi> a </mi>  <mo> ⁢ </mo>  <mi> v </mi>  </mrow>  </mrow>  </mfrac>  </mrow>  <mo> ) </mo>  </mrow>  <mo> ⁢ </mo>  <semantics>  <mrow>  <mo> ( </mo>  <mtable>  <mtr>  <mtd>  <mi> v </mi>  </mtd>  </mtr>  <mtr>  <mtd>  <mi> s </mi>  </mtd>  </mtr>  </mtable>  <mo> ) </mo>  </mrow>  <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["v", Identity]], List[TagBox["s", Identity]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation>  </semantics>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  </mrow>  <mo> /; </mo>  <mrow>  <mrow>  <mi> m </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  <mo> ∧ </mo>  <mrow>  <mi> v </mi>  <mo> ∈ </mo>  <msup>  <mi> ℕ </mi>  <mo> + </mo>  </msup>  </mrow>  </mrow>  </mrow>  <annotation-xml encoding='MathML-Content'>  <apply>  <ci> Condition </ci>  <apply>  <eq />  <apply>  <int />  <bvar>  <ci> z </ci>  </bvar>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <sin />  <apply>  <times />  <ci> c </ci>  <ci> z </ci>  </apply>  </apply>  <ci> m </ci>  </apply>  <apply>  <power />  <apply>  <sinh />  <apply>  <plus />  <ci> b </ci>  <apply>  <times />  <ci> a </ci>  <ci> z </ci>  </apply>  </apply>  </apply>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <apply>  <power />  <imaginaryi />  <ci> v </ci>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <ci> p </ci>  <ci> z </ci>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <power />  <ci> p </ci>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <apply>  <times />  <ci> v </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`v </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='rational'> 1 <sep /> 2 </cn>  <imaginaryi />  <pi />  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  <ci> c </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <imaginaryi />  <ci> c </ci>  <apply>  <plus />  <ci> m </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> m </ci>  <pi />  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <apply>  <times />  <ci> m </ci>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <plus />  <cn type='integer'> 1 </cn>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <rem />  <ci> $CellContext`m </ci>  <cn type='integer'> 2 </cn>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <apply>  <plus />  <ci> v </ci>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <imaginaryi />  <pi />  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <power />  <cn type='integer'> 2 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> v </ci>  </apply>  </apply>  </apply>  <apply>  <sum />  <bvar>  <ci> k </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> m </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> k </ci>  </apply>  <apply>  <ci> Binomial </ci>  <ci> m </ci>  <ci> k </ci>  </apply>  <apply>  <sum />  <bvar>  <ci> s </ci>  </bvar>  <lowlimit>  <cn type='integer'> 0 </cn>  </lowlimit>  <uplimit>  <apply>  <floor />  <apply>  <times />  <apply>  <plus />  <ci> v </ci>  <cn type='integer'> -1 </cn>  </apply>  <apply>  <power />  <cn type='integer'> 2 </cn>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </uplimit>  <apply>  <times />  <apply>  <power />  <cn type='integer'> -1 </cn>  <ci> s </ci>  </apply>  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <cn type='rational'> 1 <sep /> 2 </cn>  </apply>  <imaginaryi />  <pi />  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> b </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> b </ci>  <ci> v </ci>  </apply>  </apply>  <apply>  <plus />  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <times />  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <ci> m </ci>  <pi />  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <imaginaryi />  <pi />  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <imaginaryi />  <pi />  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> -2 </cn>  <ci> c </ci>  <imaginaryi />  <ci> k </ci>  </apply>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  <apply>  <times />  <apply>  <power />  <exponentiale />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 4 </cn>  <ci> b </ci>  <ci> s </ci>  </apply>  <apply>  <times />  <imaginaryi />  <pi />  <ci> v </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <ci> z </ci>  </apply>  </apply>  </apply>  </apply>  <apply>  <power />  <apply>  <plus />  <apply>  <times />  <cn type='integer'> 2 </cn>  <imaginaryi />  <ci> c </ci>  <ci> k </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <imaginaryi />  <ci> c </ci>  <ci> m </ci>  </apply>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <ci> p </ci>  </apply>  <apply>  <times />  <cn type='integer'> -1 </cn>  <apply>  <times />  <cn type='integer'> 2 </cn>  <ci> a </ci>  <ci> s </ci>  </apply>  </apply>  <apply>  <times />  <ci> a </ci>  <ci> v </ci>  </apply>  </apply>  <cn type='integer'> -1 </cn>  </apply>  </apply>  </apply>  <apply>  <ci> Binomial </ci>  <ci> v </ci>  <ci> s </ci>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  </apply>  <apply>  <and />  <apply>  <in />  <ci> m </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  <apply>  <in />  <ci> v </ci>  <apply>  <ci> SuperPlus </ci>  <ci> ℕ </ci>  </apply>  </apply>  </apply>  </apply>  </annotation-xml>  </semantics>  </math> 
   | 
 |  
 |  
 |  
 |  
 |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 |  |  
 |  |  
 |  
 |  
 |  |  
 | | Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", "z_"]]], " ", SuperscriptBox[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["b_", "+", RowBox[List["a_", " ", "z_"]]]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[ImaginaryI]", "v"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", "z"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "p"], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "2"], " ", "\[ImaginaryI]", " ", "\[Pi]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", "v"]], ")"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p"]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p"]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", "p"]], ")"]]]], " ", "z"]]], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "k"]], "+", "m"]], ")"]]]], "-", "p"]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["2", " ", "b", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["-", "p"]], "-", RowBox[List["a", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "s"]], "+", "v"]], ")"]]]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "m"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "k"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "s"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox["1", "2"]]], " ", RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], ")"]]]], "-", RowBox[List["2", " ", "b", " ", "s"]], "-", RowBox[List["b", " ", "v"]]]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", RowBox[List["2", " ", "b", " ", "v"]]], " ", RowBox[List["(", RowBox[List[FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]]]], " ", "z"]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "+", RowBox[List["2", " ", "a", " ", "s"]], "-", RowBox[List["a", " ", "v"]]]]]]], ")"]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List["2", " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "-", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]], "+", FractionBox[SuperscriptBox["\[ExponentialE]", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "m", " ", "\[Pi]"]], "+", RowBox[List["4", " ", "b", " ", "s"]], "+", RowBox[List["\[ImaginaryI]", " ", "\[Pi]", " ", "v"]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]], ")"]], " ", "z"]]]]], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "c", " ", "k"]], "+", RowBox[List["\[ImaginaryI]", " ", "c", " ", "m"]], "-", "p", "-", RowBox[List["2", " ", "a", " ", "s"]], "+", RowBox[List["a", " ", "v"]]]]]]], ")"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "s"]], "]"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]]]]]]]]]] | 
 |  
 |   
 |  
 |  
 | |   
 |  
 |  
 |  
 |  
 |  
 |  
 | | Date Added to functions.wolfram.com (modification date) | 
 |  
 |  
 |  
 |  
 |  
 |  
 |  
 |  |  
 |   
 |  
 |  
 |  |  | 
 
 
 | 
 |