Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Integration > Indefinite integration > Involving functions of the direct function, trigonometric, exponential and a power functions > Involving powers of the direct function, trigonometric, exponential and a power functions > Involving powers of cos, exp and power > Involving znep zrcosm(b z)sinhv(c z)





http://functions.wolfram.com/01.19.21.3399.01









  


  










Input Form





Integrate[z^n E^(p Sqrt[z]) Cos[b z]^m Sinh[c z]^v, z] == ((-I^v) 2^(1 - m - v) Binomial[m, m/2] Binomial[v, v/2] Gamma[2 (1 + n), (-p) Sqrt[z]] (1 - Mod[m, 2]) (1 - Mod[v, 2]))/ p^(2 (1 + n)) + I^v 2^(-1 - m - 2 n - v) Binomial[v, v/2] (1 - Mod[v, 2]) Sum[(E^(p^2/(4 I b m - 8 I b s)) Binomial[m, s] (E^(p^2/(-2 I b m + 4 I b s)) (I b (-m + 2 s))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 I b (m - 2 s) Sqrt[z])^ (h + k) ((I (p + 2 I b (m - 2 s) Sqrt[z])^2)/(b (m - 2 s)))^ ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 I b (m - 2 s) Sqrt[z]) Gamma[(1/2) (1 + h + k), -((I (p + 2 I b (m - 2 s) Sqrt[z])^2)/(b (-4 m + 8 s)))] + 2 I b (m - 2 s) Sqrt[-((I (p + 2 I b (m - 2 s) Sqrt[z])^2)/ (b (-m + 2 s)))] Gamma[(1/2) (2 + h + k), -((I (p + 2 I b (m - 2 s) Sqrt[z])^2)/(b (-4 m + 8 s)))]), {k, 0, n}, {h, 0, k}] + (I b (m - 2 s))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 I b (-m + 2 s) Sqrt[z])^(h + k) ((I (p + 2 I b (-m + 2 s) Sqrt[z])^2)/(b (-m + 2 s)))^ ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 I b (-m + 2 s) Sqrt[z]) Gamma[(1/2) (1 + h + k), (I (p + 2 I b (-m + 2 s) Sqrt[z])^2)/(b (-4 m + 8 s))] + 2 I b (-m + 2 s) Sqrt[(I (p + 2 I b (-m + 2 s) Sqrt[z])^2)/(b (-m + 2 s))] Gamma[(1/2) (2 + h + k), (I (p + 2 I b (-m + 2 s) Sqrt[z])^2)/(b (-4 m + 8 s))]), {k, 0, n}, {h, 0, k}]))/((I b (m - 2 s))^(2 (1 + n)) (I b (-m + 2 s))^(2 n)), {s, 0, Floor[(1/2) (-1 + m)]}] - 2^(-1 - m - 2 n - v) Binomial[m, m/2] (1 - Mod[m, 2]) Sum[(-1)^u E^(p^2/(8 c u - 4 c v)) ((-c^2) (-2 u + v)^2)^(-1 - 2 n) Binomial[v, u] ((-1)^v E^(p^2/(-4 c u + 2 c v)) (c (-2 u + v))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p - 2 c (-2 u + v) Sqrt[z])^ (h + k) ((p - 2 c (-2 u + v) Sqrt[z])^2/(c (-2 u + v)))^ ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p - 2 c (-2 u + v) Sqrt[z]) Gamma[(1/2) (1 + h + k), (p - 2 c (-2 u + v) Sqrt[z])^2/(4 c (-2 u + v))] - 2 c (-2 u + v) Sqrt[(p - 2 c (-2 u + v) Sqrt[z])^2/(c (-2 u + v))] Gamma[(1/2) (2 + h + k), (p - 2 c (-2 u + v) Sqrt[z])^2/ (4 c (-2 u + v))]), {k, 0, n}, {h, 0, k}] + ((-c) (-2 u + v))^(2 n) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 c (-2 u + v) Sqrt[z])^(h + k) (-((p + 2 c (-2 u + v) Sqrt[z])^2/(c (-2 u + v))))^ ((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 c (-2 u + v) Sqrt[z]) Gamma[(1/2) (1 + h + k), -((p + 2 c (-2 u + v) Sqrt[z])^2/(4 c (-2 u + v)))] + 2 c (-2 u + v) Sqrt[-((p + 2 c (-2 u + v) Sqrt[z])^2/(c (-2 u + v)))] Gamma[(1/2) (2 + h + k), -((p + 2 c (-2 u + v) Sqrt[z])^2/(4 c (-2 u + v)))]), {k, 0, n}, {h, 0, k}]), {u, 0, Floor[(1/2) (-1 + v)]}] + 2^(-1 - m - 2 n - v) Sum[Binomial[m, s] Sum[(-1)^u Binomial[v, u] (((-1)^v E^(p^2/(-4 I b m + 8 I b s - 8 c u + 4 c v)) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z])^(h + k) ((p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z])^2/((-I) b m + 2 I b s - 2 c u + c v))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z]) Gamma[(1/2) (1 + h + k), (p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z])^2/(-4 I b m + 8 I b s - 8 c u + 4 c v)] + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[ (p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z])^2/ ((-I) b m + 2 I b s - 2 c u + c v)] Gamma[(1/2) (2 + h + k), (p + 2 (I b m - 2 I b s + 2 c u - c v) Sqrt[z])^2/ (-4 I b m + 8 I b s - 8 c u + 4 c v)]), {k, 0, n}, {h, 0, k}])/(I b m - 2 I b s + 2 c u - c v)^(2 (1 + n)) + ((-1)^v E^(p^2/(4 I b m - 8 I b s - 8 c u + 4 c v)) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^(h + k) ((p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/(I b m - 2 I b s - 2 c u + c v))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z]) Gamma[(1/2) (1 + h + k), (p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/(4 (I b m - 2 I b s - 2 c u + c v))] - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[ (p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/ (I b m - 2 I b s - 2 c u + c v)] Gamma[(1/2) (2 + h + k), (p - 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/ (4 (I b m - 2 I b s - 2 c u + c v))]), {k, 0, n}, {h, 0, k}])/((-I) b m + 2 I b s + 2 c u - c v)^(2 (1 + n)) + (E^(p^2/(-4 I b m + 8 I b s + 8 c u - 4 c v)) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^(h + k) (-((p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/ (I b m - 2 I b s - 2 c u + c v)))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z]) Gamma[(1/2) (1 + h + k), -((p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/ (4 (I b m - 2 I b s - 2 c u + c v)))] + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[-((p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/(I b m - 2 I b s - 2 c u + c v))] Gamma[(1/2) (2 + h + k), -((p + 2 (I b m - 2 I b s - 2 c u + c v) Sqrt[z])^2/ (4 (I b m - 2 I b s - 2 c u + c v)))]), {k, 0, n}, {h, 0, k}])/(I b m - 2 I b s - 2 c u + c v)^(2 (1 + n)) + (E^(p^2/(4 I b m - 8 I b s + 8 c u - 4 c v)) Sum[(-1)^(-h + k) 4^k p^(-h - k + 2 n) (p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z])^(h + k) (-((p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z])^2/ ((-I) b m + 2 I b s - 2 c u + c v)))^((1/2) (-1 - h - k)) Binomial[k, h] Binomial[n, k] (p (p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z]) Gamma[(1/2) (1 + h + k), -((p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z])^2/ (-4 I b m + 8 I b s + 4 c (-2 u + v)))] + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[-((p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z])^2/((-I) b m + 2 I b s - 2 c u + c v))] Gamma[(1/2) (2 + h + k), -((p + 2 ((-I) b m + 2 I b s - 2 c u + c v) Sqrt[z])^2/ (-4 I b m + 8 I b s + 4 c (-2 u + v)))]), {k, 0, n}, {h, 0, k}])/((-I) b m + 2 I b s - 2 c u + c v)^(2 (1 + n))), {u, 0, Floor[(1/2) (-1 + v)]}], {s, 0, Floor[(1/2) (-1 + m)]}] /; Element[m, Integers] && m > 0 && Element[v, Integers] && v > 0 && Element[n, Integers] && n >= 0










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SuperscriptBox["z", "n"], SuperscriptBox["\[ExponentialE]", RowBox[List["p", " ", SqrtBox["z"]]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b", " ", "z"]], "]"]], "m"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c", " ", "z"]], "]"]], "v"], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ImaginaryI]", "v"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "v"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["-", "p"]], " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "v"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["c", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], "2"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "u"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c", " ", "u"]], "+", RowBox[List["2", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "u"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]], ")"]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]], ")"]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], "/", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]], ")"]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "\[And]", RowBox[List["m", ">", "0"]], "\[And]", RowBox[List["v", "\[Element]", "Integers"]], "\[And]", RowBox[List["v", ">", "0"]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <msup> <mi> z </mi> <mi> n </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mi> p </mi> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </msup> <mo> &#8290; </mo> <mrow> <msup> <mi> cos </mi> <mi> m </mi> </msup> <mo> ( </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mi> v </mi> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mi> v </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mrow> <mo> - </mo> <mi> p </mi> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <msup> <mi> &#8520; </mi> <mi> v </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> v </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[FractionBox[&quot;v&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> v </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;s&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> m </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> - </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mfrac> <mi> m </mi> <mn> 2 </mn> </mfrac> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[FractionBox[&quot;m&quot;, &quot;2&quot;], Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <semantics> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> mod </mi> <mo> &#8290; </mo> <mn> 2 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </annotation-xml> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <msup> <mi> c </mi> <mn> 2 </mn> </msup> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;u&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> c </mi> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mn> 2 </mn> <mrow> <mrow> <mo> - </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> <mo> - </mo> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> s </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;m&quot;, Identity]], List[TagBox[&quot;s&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> u </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mo> &#8970; </mo> <mfrac> <mrow> <mi> v </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 2 </mn> </mfrac> <mo> &#8971; </mo> </mrow> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> u </mi> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> v </mi> </mtd> </mtr> <mtr> <mtd> <mi> u </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;v&quot;, Identity]], List[TagBox[&quot;u&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> v </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> u </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> v </mi> </msup> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mfrac> <msup> <mi> p </mi> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> h </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> k </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> k </mi> <mo> - </mo> <mi> h </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mn> 4 </mn> <mi> k </mi> </msup> <mo> &#8290; </mo> <msup> <mi> p </mi> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> n </mi> </mrow> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> </mrow> </msup> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> h </mi> </mrow> <mo> - </mo> <mi> k </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </msup> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> <mtr> <mtd> <mi> h </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;k&quot;, Identity]], List[TagBox[&quot;h&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> n </mi> </mtd> </mtr> <mtr> <mtd> <mi> k </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;(&quot;, GridBox[List[List[TagBox[&quot;n&quot;, Identity]], List[TagBox[&quot;k&quot;, Identity]]]], &quot;)&quot;]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> p </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> h </mi> <mo> + </mo> <mi> k </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 8 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mi> p </mi> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> - </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mi> z </mi> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mrow> <mrow> <mo> - </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> m </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> b </mi> <mo> &#8290; </mo> <mi> s </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> u </mi> </mrow> <mo> + </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> v </mi> </mrow> </mrow> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> m </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> v </mi> <mo> &#8712; </mo> <msup> <mi> &#8469; </mi> <mo> + </mo> </msup> </mrow> <mo> &#8743; </mo> <mrow> <mi> n </mi> <mo> &#8712; </mo> <mi> &#8469; </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <power /> <ci> z </ci> <ci> n </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <ci> p </ci> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <cos /> <apply> <times /> <ci> b </ci> <ci> z </ci> </apply> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <sinh /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <ci> v </ci> </apply> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <imaginaryi /> <ci> v </ci> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> p </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> p </ci> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <imaginaryi /> <ci> v </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <apply> <times /> <ci> v </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`v </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> <imaginaryi /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> m </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> m </ci> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <rem /> <ci> $CellContext`m </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> c </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> u </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> c </ci> </apply> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> v </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> s </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <ci> Binomial </ci> <ci> m </ci> <ci> s </ci> </apply> <apply> <sum /> <bvar> <ci> u </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <apply> <floor /> <apply> <times /> <apply> <plus /> <ci> v </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> u </ci> </apply> <apply> <ci> Binomial </ci> <ci> v </ci> <ci> u </ci> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <apply> <plus /> <ci> v </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> u </ci> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> v </ci> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <power /> <ci> p </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <apply> <plus /> <ci> n </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> <apply> <sum /> <bvar> <ci> h </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> k </ci> </uplimit> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <ci> n </ci> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <apply> <plus /> <ci> k </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> </apply> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <ci> k </ci> </apply> <apply> <power /> <ci> p </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> h </ci> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> h </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> Binomial </ci> <ci> k </ci> <ci> h </ci> </apply> <apply> <ci> Binomial </ci> <ci> n </ci> <ci> k </ci> </apply> <apply> <plus /> <apply> <times /> <ci> p </ci> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <ci> h </ci> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <ci> b </ci> <imaginaryi /> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 8 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 8 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> p </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> </apply> <apply> <power /> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <imaginaryi /> <ci> b </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <imaginaryi /> <ci> b </ci> <ci> s </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> u </ci> </apply> </apply> <apply> <times /> <ci> c </ci> <ci> v </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> m </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> v </ci> <apply> <ci> SuperPlus </ci> <ci> &#8469; </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <ci> &#8469; </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[SuperscriptBox["z_", "n_"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["p_", " ", SqrtBox["z_"]]]], " ", SuperscriptBox[RowBox[List["Cos", "[", RowBox[List["b_", " ", "z_"]], "]"]], "m_"], " ", SuperscriptBox[RowBox[List["Sinh", "[", RowBox[List["c_", " ", "z_"]], "]"]], "v_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["-", SuperscriptBox["\[ImaginaryI]", "v"]]], " ", SuperscriptBox["2", RowBox[List["1", "-", "m", "-", "v"]]], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]], ",", RowBox[List[RowBox[List["-", "p"]], " ", SqrtBox["z"]]]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]]]], "+", RowBox[List[SuperscriptBox["\[ImaginaryI]", "v"], " ", SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", FractionBox["v", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["v", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", "n"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "s"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "m"]], "+", RowBox[List["2", " ", "s"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"]]], RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "m"]], "+", RowBox[List["8", " ", "s"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "-", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", FractionBox["m", "2"]]], "]"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["Mod", "[", RowBox[List["m", ",", "2"]], "]"]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["c", "2"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], "2"]]], ")"]], RowBox[List[RowBox[List["-", "1"]], "-", RowBox[List["2", " ", "n"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "u"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "c", " ", "u"]], "+", RowBox[List["2", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "c"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]], ")"]], RowBox[List["2", " ", "n"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]], "+", RowBox[List[SuperscriptBox["2", RowBox[List[RowBox[List["-", "1"]], "-", "m", "-", RowBox[List["2", " ", "n"]], "-", "v"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]]]], "]"]]], RowBox[List[RowBox[List["Binomial", "[", RowBox[List["m", ",", "s"]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["u", "=", "0"]], RowBox[List["Floor", "[", RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "v"]], ")"]]]], "]"]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "u"], " ", RowBox[List["Binomial", "[", RowBox[List["v", ",", "u"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "v"], " ", SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["8", " ", "c", " ", "u"]], "+", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["2", " ", "c", " ", "u"]], "-", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]], "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List["4", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]], "+", RowBox[List[SuperscriptBox["\[ExponentialE]", FractionBox[SuperscriptBox["p", "2"], RowBox[List[RowBox[List["4", " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "-", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["8", " ", "c", " ", "u"]], "-", RowBox[List["4", " ", "c", " ", "v"]]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], RowBox[List[RowBox[List["-", "2"]], " ", RowBox[List["(", RowBox[List["1", "+", "n"]], ")"]]]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "0"]], "n"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["h", "=", "0"]], "k"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List[RowBox[List["-", "h"]], "+", "k"]]], " ", SuperscriptBox["4", "k"], " ", SuperscriptBox["p", RowBox[List[RowBox[List["-", "h"]], "-", "k", "+", RowBox[List["2", " ", "n"]]]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], RowBox[List["h", "+", "k"]]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]], ")"]], RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "-", "h", "-", "k"]], ")"]]]]], " ", RowBox[List["Binomial", "[", RowBox[List["k", ",", "h"]], "]"]], " ", RowBox[List["Binomial", "[", RowBox[List["n", ",", "k"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["p", " ", RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["1", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]]]], "]"]]]], "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]]]]]], " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List[FractionBox["1", "2"], " ", RowBox[List["(", RowBox[List["2", "+", "h", "+", "k"]], ")"]]]], ",", RowBox[List["-", FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["p", "+", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "\[ImaginaryI]"]], " ", "b", " ", "m"]], "+", RowBox[List["2", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "-", RowBox[List["2", " ", "c", " ", "u"]], "+", RowBox[List["c", " ", "v"]]]], ")"]], " ", SqrtBox["z"]]]]], ")"]], "2"], RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", "\[ImaginaryI]", " ", "b", " ", "m"]], "+", RowBox[List["8", " ", "\[ImaginaryI]", " ", "b", " ", "s"]], "+", RowBox[List["4", " ", "c", " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "u"]], "+", "v"]], ")"]]]]]]]]]]], "]"]]]]]], ")"]]]]]]]]]]]], ")"]]]]]]]]]]]]]], "/;", RowBox[List[RowBox[List["m", "\[Element]", "Integers"]], "&&", RowBox[List["m", ">", "0"]], "&&", RowBox[List["v", "\[Element]", "Integers"]], "&&", RowBox[List["v", ">", "0"]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18