|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.19.24.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Product[Sinh[z + (Pi k I)/n], {k, 1, n - 1}] ==
(I/2)^(n - 1) (Sinh[n z]/Sinh[z]) /; Element[n, Integers] && n > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "1"]], RowBox[List["n", "-", "1"]]], RowBox[List["Sinh", "[", RowBox[List["z", "+", FractionBox[RowBox[List["\[Pi]", " ", "k", " ", "\[ImaginaryI]"]], "n"]]], "]"]]]], "\[Equal]", RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List["Sinh", "[", RowBox[List["n", " ", "z"]], "]"]], RowBox[List["Sinh", "[", "z", "]"]]]]]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> π </mi> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mi> n </mi> </mfrac> <mo> + </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mfrac> <mi> ⅈ </mi> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mfrac> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> n </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> sinh </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> </mfrac> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <msup> <mi> ℕ </mi> <mo> + </mo> </msup> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </uplimit> <apply> <sinh /> <apply> <plus /> <apply> <times /> <imaginaryi /> <pi /> <ci> k </ci> <apply> <power /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <imaginaryi /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> n </ci> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <sinh /> <apply> <times /> <ci> n </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <sinh /> <ci> z </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <in /> <ci> n </ci> <apply> <ci> SuperPlus </ci> <ci> ℕ </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k_", "=", "1"]], RowBox[List["n_", "-", "1"]]], RowBox[List["Sinh", "[", RowBox[List["z_", "+", FractionBox[RowBox[List["\[Pi]", " ", "k_", " ", "\[ImaginaryI]"]], "n_"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", FractionBox["\[ImaginaryI]", "2"], ")"]], RowBox[List["n", "-", "1"]]], " ", RowBox[List["Sinh", "[", RowBox[List["n", " ", "z"]], "]"]]]], RowBox[List["Sinh", "[", "z", "]"]]], "/;", RowBox[List[RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|