Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Representations through more general functions > Through Meijer G > Generalized cases involving 0F1





http://functions.wolfram.com/01.19.26.0140.01









  


  










Input Form





Sinh[z] Hypergeometric0F1[b, z^2/4] == (-(1/z)) 2^(b - 3/2) Gamma[b] MeijerG[{{5/4 - b/2, 7/4 - b/2}, {}}, {{1}, {1/2, 3/2 - b, 2 - b}}, I z, 1/2]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Sinh", "[", "z", "]"]], RowBox[List["Hypergeometric0F1", "[", RowBox[List["b", ",", FractionBox[SuperscriptBox["z", "2"], "4"]]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", "z"]]], SuperscriptBox["2", RowBox[List["b", "-", FractionBox["3", "2"]]]], RowBox[List["Gamma", "[", "b", "]"]], RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", FractionBox["b", "2"]]], ",", RowBox[List[FractionBox["7", "4"], "-", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "-", "b"]], ",", RowBox[List["2", "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["\[ImaginaryI]", " ", "z"]], ",", FractionBox["1", "2"]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> sinh </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mrow> <msub> <mo> &#8202; </mo> <mn> 0 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mo> &#8202; </mo> <mo> ; </mo> <mi> b </mi> <mo> ; </mo> <mfrac> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mn> 4 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox[&quot;\[InvisiblePrefixScriptBase]&quot;, &quot;0&quot;], SubscriptBox[&quot;F&quot;, &quot;1&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[TagBox[&quot;\[Null]&quot;, InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[TagBox[TagBox[&quot;b&quot;, Hypergeometric0F1, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric0F1, Rule[Editable, False]], &quot;;&quot;, TagBox[FractionBox[SuperscriptBox[&quot;z&quot;, &quot;2&quot;], &quot;4&quot;], Hypergeometric0F1, Rule[Editable, True]]]], &quot;)&quot;]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric0F1] </annotation> </semantics> </mrow> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mn> 2 </mn> <mrow> <mi> b </mi> <mo> - </mo> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> </mrow> </msup> <mo> &#8290; </mo> <mrow> <mi> &#915; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> b </mi> <mo> ) </mo> </mrow> <mtext> </mtext> </mrow> <mi> z </mi> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <msubsup> <mi> G </mi> <mrow> <mn> 2 </mn> <mo> , </mo> <mn> 4 </mn> </mrow> <mrow> <mn> 1 </mn> <mo> , </mo> <mn> 2 </mn> </mrow> </msubsup> <mo> &#8289; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> &#10072; </mo> <mtable> <mtr> <mtd> <mrow> <mrow> <mfrac> <mn> 5 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mrow> <mfrac> <mn> 7 </mn> <mn> 4 </mn> </mfrac> <mo> - </mo> <mfrac> <mi> b </mi> <mn> 2 </mn> </mfrac> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn> 1 </mn> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mrow> <mfrac> <mn> 3 </mn> <mn> 2 </mn> </mfrac> <mo> - </mo> <mi> b </mi> </mrow> <mo> , </mo> <mrow> <mn> 2 </mn> <mo> - </mo> <mi> b </mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubsuperscriptBox[TagBox[&quot;G&quot;, MeijerG], RowBox[List[&quot;2&quot;, &quot;,&quot;, &quot;4&quot;]], RowBox[List[&quot;1&quot;, &quot;,&quot;, &quot;2&quot;]]], &quot;\[InvisibleApplication]&quot;, RowBox[List[&quot;(&quot;, RowBox[List[TagBox[RowBox[List[TagBox[RowBox[List[&quot;\[ImaginaryI]&quot;, &quot; &quot;, &quot;z&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]]]], MeijerG], &quot;\[VerticalSeparator]&quot;, GridBox[List[List[RowBox[List[TagBox[RowBox[List[FractionBox[&quot;5&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;b&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;7&quot;, &quot;4&quot;], &quot;-&quot;, FractionBox[&quot;b&quot;, &quot;2&quot;]]], MeijerG, Rule[Editable, True]]]]], List[RowBox[List[TagBox[&quot;1&quot;, MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[FractionBox[&quot;1&quot;, &quot;2&quot;], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[FractionBox[&quot;3&quot;, &quot;2&quot;], &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]], &quot;,&quot;, TagBox[RowBox[List[&quot;2&quot;, &quot;-&quot;, &quot;b&quot;]], MeijerG, Rule[Editable, True]]]]]]]]], &quot;)&quot;]]]], MeijerG, Rule[Editable, False]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <times /> <apply> <sinh /> <ci> z </ci> </apply> <apply> <ci> Hypergeometric0F1 </ci> <ci> b </ci> <apply> <times /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 4 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <ci> Gamma </ci> <ci> b </ci> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> MeijerG </ci> <list> <list> <apply> <plus /> <cn type='rational'> 5 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <plus /> <cn type='rational'> 7 <sep /> 4 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> b </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </list> <list /> </list> <list> <list> <cn type='integer'> 1 </cn> </list> <list> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <plus /> <cn type='rational'> 3 <sep /> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <plus /> <cn type='integer'> 2 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> </list> </list> <apply> <times /> <imaginaryi /> <ci> z </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[RowBox[List["Sinh", "[", "z_", "]"]], " ", RowBox[List["Hypergeometric0F1", "[", RowBox[List["b_", ",", FractionBox[SuperscriptBox["z_", "2"], "4"]]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["2", RowBox[List["b", "-", FractionBox["3", "2"]]]], " ", RowBox[List["Gamma", "[", "b", "]"]], " ", RowBox[List["MeijerG", "[", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List["{", RowBox[List[RowBox[List[FractionBox["5", "4"], "-", FractionBox["b", "2"]]], ",", RowBox[List[FractionBox["7", "4"], "-", FractionBox["b", "2"]]]]], "}"]], ",", RowBox[List["{", "}"]]]], "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[FractionBox["1", "2"], ",", RowBox[List[FractionBox["3", "2"], "-", "b"]], ",", RowBox[List["2", "-", "b"]]]], "}"]]]], "}"]], ",", RowBox[List["\[ImaginaryI]", " ", "z"]], ",", FractionBox["1", "2"]]], "]"]]]], "z"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02