Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Sinh






Mathematica Notation

Traditional Notation









Elementary Functions > Sinh[z] > Visualizations





3D plots over the complex plane (31 graphics)


Entering the complex plane

in the upper half of the near the real axis viewed from the lower half‐plane. Here the complex variable is expressed as . The red surface is the real part of . The blue, semitransparent surface is the imaginary part of . The pink tube is the real part of the function along the real axis and the skyblue tube is the imaginary part of the function along the real axis. Along the real axis, the real part is a monotonic function that is exponentially increasing; going away from the real axis into the gives an oscillating function. The imaginary part vanishes identically along the real axis.

Real part over the complex plane

The real part of where . The surface is colored according to the imaginary part. The right graphic is a contour plot of the scaled real part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. Along the real axis, the real part of is a monotonic function; going away from the real axis into the gives an oscillating function.

The absolute value of the real part of where . The surface is colored according to the absolute value of the imaginary part. The right graphic is a contour plot of the scaled absolute value of the real part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. Along the real axis, the absolute value of the real part of is exponentially increasing; going away from the real axis into the gives an oscillating function.

Imaginary part over the complex plane

The imaginary part of where . The surface is colored according to the real part. The right graphic is a contour plot of the scaled imaginary part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. Along the real axis, the imaginary part of vanishes identically; going away from the real axis into the gives an oscillating function.

The absolute value of the imaginary part of where . The surface is colored according to the absolute value of the real part. The right graphic is a contour plot of the scaled absolute value of the imaginary part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. Along the real axis, the imaginary part of vanishes identically.

Absolute value part over the complex plane

The absolute value of where . The surface is colored according to the argument. The right graphic is a contour plot of the scaled absolute value, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. The zeros at are visible.

Argument over the complex plane

The argument of where . The surface is colored according to the absolute value. The right graphic is a contour plot of the scaled argument, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. has lines of discontinuities over the .

The square of the sine of the argument of where . For dominantly real values, the function values are near 0, and for dominantly imaginary values, the function values are near 1. The surface is colored according to the absolute value. The right graphic is a cyclically colored contour plot of the argument. Red represents arguments near and light‐blue represents arguments near 0.

Zero-pole plot

The logarithm of the absolute value of where in the upper half‐plane. The surface is colored according to the square of the argument. In this plot, zeros are easily visible as spikes extending downwards a and poles and logarithmic singularities as spikes extending upwards. The zeros at are visible.

Real part over the complex plane near infinity

The real part of where . The surface is colored according to the imaginary part. The right graphic is a contour plot of the scaled real part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At the function has an essential singularity.

The absolute value of the real part of where . The surface is colored according to the absolute value of the imaginary part. The right graphic is a contour plot of the scaled absolute value of the real part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At , the function has an essential singularity.

Imaginary part over the complex plane near infinity

The imaginary part of where . The surface is colored according to the real part. The right graphic is a contour plot of the scaled imaginary part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At , the function has an essential singularity.

The absolute value of the imaginary part of where . The surface is colored according to the absolute value of the real part. The right graphic is a contour plot of the scaled absolute value of the imaginary part, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At , the function has an essential singularity.

Absolute value part over the complex plane near infinity

The absolute value of where . The surface is colored according to the argument. The right graphic is a contour plot of the scaled absolute value, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At , the function has an essential singularity. The two colored dots in the right graphic are the zeros at .

Argument over the complex plane near infinity

The argument of where . The surface is colored according to the absolute value. The right graphic is a contour plot of the scaled argument, meaning the height values of the left graphic translate into color values in the right graphic. Red is smallest and violet is largest. At , the function has an essential singularity.

The square of the sine of the argument of where . For dominantly real values, the function values are near 0, and for dominantly imaginary values, the function values are near 1. The surface is colored according to the absolute value. The right graphic is a cyclical colored contour plot of the argument. Red represents arguments near and light‐blue represents arguments near 0.

Zero-pole plot near infinity

The logarithm of the absolute value of where in the upper half‐plane. The surface is colored according to the square of the argument. In this plot, zeros are easily visible as spikes extending downwards and poles and logarithmic singularities as spikes extending upwards. At , the function has an essential singularity.