Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Integration > Indefinite integration > Involving one direct function and elementary functions > Involving trigonometric functions > Involving sin and cos > Involving sin(c z)(a+b cos(2c z))beta





http://functions.wolfram.com/01.08.21.0058.01









  


  










Input Form





Integrate[Sin[c z] Sqrt[a + b Cos[2 c z]] Tan[c z], z] == (1/(4 Sqrt[a - b] Sqrt[-b] c)) (-4 Sqrt[-b] (-a + b) ArcTanh[(Sqrt[a - b] Sin[c z])/ Sqrt[a + b Cos[2 c z]]] - Sqrt[a - b] (Sqrt[2] (a - 3 b) Log[Sqrt[a + b Cos[2 c z]] + Sqrt[2] Sqrt[-b] Sin[c z]] + 2 Sqrt[-b] Sqrt[a + b Cos[2 c z]] Sin[c z]))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", " ", RowBox[List[RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[FractionBox["1", RowBox[List["4", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", "c"]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mrow> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> </mrow> </mfrac> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 4 </mn> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> tanh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mfrac> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> log </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sin </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -4 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> <apply> <arctanh /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sin /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Sin", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c_", " ", "z_"]], "]"]]]]]]], " ", RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List[RowBox[List["-", "4"]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]], " ", RowBox[List["ArcTanh", "[", FractionBox[RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]]], "]"]]]], "-", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", RowBox[List["(", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["3", " ", "b"]]]], ")"]], " ", RowBox[List["Log", "[", RowBox[List[SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], "+", RowBox[List[SqrtBox["2"], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], "]"]]]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]]], " ", RowBox[List["Sin", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]], RowBox[List["4", " ", SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", "c"]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18