|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.08.21.0120.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Sqrt[(a + b Tan[c z]^2)^3], z] ==
(I Sqrt[(a + b Tan[c z]^2)^3]
((3 a - 2 b) Sqrt[-b] Log[2 (I Sqrt[-b] Tan[c z] +
Sqrt[a + b Tan[c z]^2])] + (a - b)^(3/2)
(-Log[-((4 (a - I b Tan[c z] + Sqrt[a - b] Sqrt[a + b Tan[c z]^2]))/
((a - b)^(5/2) (-1 + I Tan[c z])))] +
Log[(4 (a + I b Tan[c z] + Sqrt[a - b] Sqrt[a + b Tan[c z]^2]))/
((a - b)^(5/2) (1 + I Tan[c z]))]) -
I b Tan[c z] Sqrt[a + b Tan[c z]^2]))/(2 c (a + b Tan[c z]^2)^(3/2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List["\[ImaginaryI]", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Log", "[", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msqrt> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> log </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mi> b </mi> </mrow> </msqrt> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='integer'> 3 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <ln /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ln /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <cn type='rational'> 3 <sep /> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> </apply> <apply> <ln /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> b </ci> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]], ")"]], "3"]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List["\[ImaginaryI]", " ", SqrtBox[SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], "3"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["3", " ", "a"]], "-", RowBox[List["2", " ", "b"]]]], ")"]], " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Log", "[", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", "b"]]], " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]], ")"]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["3", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["Log", "[", RowBox[List["-", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]]]], "]"]]]], "+", RowBox[List["Log", "[", FractionBox[RowBox[List["4", " ", RowBox[List["(", RowBox[List["a", "+", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]], "+", RowBox[List[SqrtBox[RowBox[List["a", "-", "b"]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], RowBox[List["5", "/", "2"]]], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List["\[ImaginaryI]", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]]]]], "]"]]]], ")"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "b", " ", RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]], ")"]]]], RowBox[List["2", " ", "c", " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]], ")"]], RowBox[List["3", "/", "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|