|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.08.21.0130.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrate[Tan[c z] (a + b Sqrt[Tan[c z]])^\[Beta], z] ==
-(((a^3 + (-1)^(1/4) a^2 b + I a b^2 + (-1)^(3/4) b^3)
Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta], (a + b Sqrt[Tan[c z]])/
(a - (-1)^(1/4) b)] + (a^3 - (-1)^(1/4) a^2 b + I a b^2 -
(-1)^(3/4) b^3) Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a + (-1)^(1/4) b)] +
a^3 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a - (-1)^(3/4) b)] +
(-1)^(3/4) a^2 b Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a - (-1)^(3/4) b)] -
I a b^2 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a - (-1)^(3/4) b)] +
(-1)^(1/4) b^3 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a - (-1)^(3/4) b)] +
a^3 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a + (-1)^(3/4) b)] -
(-1)^(3/4) a^2 b Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a + (-1)^(3/4) b)] -
I a b^2 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a + (-1)^(3/4) b)] -
(-1)^(1/4) b^3 Hypergeometric2F1[1 + \[Beta], 1, 2 + \[Beta],
(a + b Sqrt[Tan[c z]])/(a + (-1)^(3/4) b)])
(a + b Sqrt[Tan[c z]])^(1 + \[Beta]))/(2 (a^4 + b^4) c (1 + \[Beta]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], ")"]], "\[Beta]"], " ", RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["-", RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], ")"]], RowBox[List["1", "+", "\[Beta]"]]]]], ")"]]]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", "\[Beta]"]], ")"]]]], ")"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> ∫ </mo> <mrow> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mi> β </mi> </msup> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mn> 1 </mn> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 4 </mn> </msup> <mo> + </mo> <msup> <mi> b </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mi> c </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "+", RowBox[List[RadicalBox[RowBox[List["-", "1"]], "4"], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> a </mi> <mn> 3 </mn> </msup> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> b </mi> <mo> ⁢ </mo> <msup> <mi> a </mi> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <msup> <mi> b </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> a </mi> </mrow> <mo> + </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "-", RowBox[List[RadicalBox[RowBox[List["-", "1"]], "4"], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> <mo> + </mo> <mrow> <mroot> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mn> 4 </mn> </mroot> <mo> ⁢ </mo> <msup> <mi> b </mi> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mi> F </mi> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mn> 1 </mn> </mrow> <mo> ; </mo> <mrow> <mi> β </mi> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ; </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 4 </mn> </mrow> </msup> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox["F", FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[RowBox[List["\[Beta]", "+", "1"]], Hypergeometric2F1], ",", TagBox["1", Hypergeometric2F1]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[TagBox[TagBox[RowBox[List["\[Beta]", "+", "2"]], Hypergeometric2F1], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1], ";", TagBox[FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", RowBox[List[SuperscriptBox["tan", FractionBox["1", "2"]], "(", RowBox[List["c", " ", "z"]], ")"]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]], Hypergeometric2F1]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQ[Slot[1], Slot[2], Slot[3]]]]], Hypergeometric2F1] </annotation> </semantics> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mrow> <msup> <mi> tan </mi> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mrow> <mi> β </mi> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <ci> β </ci> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 4 </cn> </apply> </apply> <ci> c </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <ci> a </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 3 </cn> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> b </ci> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> b </ci> <cn type='integer'> 2 </cn> </apply> <imaginaryi /> <ci> a </ci> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 1 <sep /> 4 </cn> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Hypergeometric2F1 </ci> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 1 </cn> <apply> <plus /> <ci> β </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <ci> b </ci> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <plus /> <ci> β </ci> <cn type='integer'> 1 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[RowBox[List[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a_", "+", RowBox[List["b_", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]]]]]]], ")"]], "\[Beta]_"]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["a", "3"], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b"]], "+", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["b", "3"]]]]], ")"]], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "+", RowBox[List[SuperscriptBox["a", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", SuperscriptBox["a", "2"], " ", "b", " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List["\[ImaginaryI]", " ", "a", " ", SuperscriptBox["b", "2"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]], "-", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["1", "/", "4"]]], " ", SuperscriptBox["b", "3"], " ", RowBox[List["Hypergeometric2F1", "[", RowBox[List[RowBox[List["1", "+", "\[Beta]"]], ",", "1", ",", RowBox[List["2", "+", "\[Beta]"]], ",", FractionBox[RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], RowBox[List["a", "+", RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], RowBox[List["3", "/", "4"]]], " ", "b"]]]]]]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", RowBox[List["b", " ", SqrtBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]]]]]]], ")"]], RowBox[List["1", "+", "\[Beta]"]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[SuperscriptBox["a", "4"], "+", SuperscriptBox["b", "4"]]], ")"]], " ", "c", " ", RowBox[List["(", RowBox[List["1", "+", "\[Beta]"]], ")"]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|