Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











Tan






Mathematica Notation

Traditional Notation









Elementary Functions > Tan[z] > Integration > Indefinite integration > Involving functions of the direct function and trigonometric functions > Involving algebraic functions of the direct function and trigonometric functions > Involving cos > Involving cos(c z)(a+b tan2(c z))beta





http://functions.wolfram.com/01.08.21.0213.01









  


  










Input Form





Integrate[Cos[c z]/Sqrt[a + b Tan[c z]^2], z] == ((1 + Cos[c z]) Sqrt[(a + b + (a - b) Cos[2 c z])/(1 + Cos[c z])^2] Sec[c z] (-2 I (a - 2 b + 2 Sqrt[b (-a + b)]) EllipticE[I ArcSinh[Sqrt[-(a/(a - 2 (b + Sqrt[b (-a + b)])))] Tan[(c z)/2]], (a - 2 (b + Sqrt[b (-a + b)]))/ (a - 2 b + 2 Sqrt[b (-a + b)])] Sqrt[(1/a) ((b - Sqrt[b (-a + b)] + (a - b + Sqrt[b (-a + b)]) Cos[c z]) Sec[(c z)/2]^2)] Sqrt[(1/a) ((b + Sqrt[b (-a + b)] - (-a + b + Sqrt[b (-a + b)]) Cos[c z]) Sec[(c z)/2]^2)] + 4 I Sqrt[b (-a + b)] EllipticF[ I ArcSinh[Sqrt[-(a/(a - 2 (b + Sqrt[b (-a + b)])))] Tan[(c z)/2]], (a - 2 (b + Sqrt[b (-a + b)]))/(a - 2 b + 2 Sqrt[b (-a + b)])] Sqrt[(1/a) ((b - Sqrt[b (-a + b)] + (a - b + Sqrt[b (-a + b)]) Cos[c z]) Sec[(c z)/2]^2)] Sqrt[(1/a) ((b + Sqrt[b (-a + b)] - (-a + b + Sqrt[b (-a + b)]) Cos[c z]) Sec[(c z)/2]^2)] + Sqrt[-((a - 2 b + 2 Sqrt[b (-a + b)])/a)] (a + b + (a - b) Cos[2 c z]) Sec[(c z)/2]^2 Tan[(c z)/2]))/ (2 (a - b) Sqrt[-(a/(a - 2 (b + Sqrt[b (-a + b)])))] c Sqrt[(a + b + (a - b) Cos[2 c z]) Sec[(c z)/2]^4] Sqrt[a + b Tan[c z]^2])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]], SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z"]]]]]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]], RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]]]]], "]"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", "a"], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], ")"]]]], ")"]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", "a"], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], ")"]]]], ")"]]]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]], RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]]]]], "]"]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", "a"], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], ")"]]]], ")"]]]], " ", RowBox[List["\[Sqrt]", RowBox[List["(", RowBox[List[FractionBox["1", "a"], RowBox[List["(", RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], ")"]]]], ")"]]]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]], "a"]]]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]], ")"]], "/", RowBox[List["(", RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", "c", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "4"]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mo> &#8747; </mo> <mrow> <mfrac> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <msqrt> <mrow> <mi> a </mi> <mo> + </mo> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </msqrt> </mfrac> <mo> &#8290; </mo> <mrow> <mo> &#8518; </mo> <mi> z </mi> </mrow> </mrow> </mrow> <mo> &#10869; </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> </msqrt> <mo> &#8290; </mo> <mrow> <mi> sec </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mi> a </mi> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> a </mi> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> <mo> + </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <mi> F </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> sinh </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> a </mi> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mrow> <mi> tan </mi> <mo> &#8289; </mo> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> <mo> &#8290; </mo> <msqrt> <mfrac> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mi> a </mi> </mrow> <mo> + </mo> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> <mi> a </mi> </mfrac> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> / </mo> <mrow> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <mfrac> <mi> a </mi> <mrow> <mi> a </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> + </mo> <msqrt> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> b </mi> <mo> - </mo> <mi> a </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mfrac> </mrow> </msqrt> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> cos </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> sec </mi> <mn> 4 </mn> </msup> <mo> ( </mo> <mfrac> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mn> 2 </mn> </mfrac> <mo> ) </mo> </mrow> </mrow> </msqrt> <mo> &#8290; </mo> <msqrt> <mrow> <mrow> <mi> b </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> tan </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> c </mi> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mi> a </mi> </mrow> </msqrt> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <int /> <bvar> <ci> z </ci> </bvar> <apply> <times /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <imaginaryi /> <apply> <ci> EllipticE </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <imaginaryi /> <apply> <ci> EllipticF </ci> <apply> <times /> <imaginaryi /> <apply> <arcsinh /> <apply> <times /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <ci> b </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <cos /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> a </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> a </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> b </ci> <apply> <power /> <apply> <times /> <ci> b </ci> <apply> <plus /> <ci> b </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> a </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> c </ci> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <ci> b </ci> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <ci> b </ci> </apply> </apply> <apply> <cos /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> c </ci> <ci> z </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <sec /> <apply> <times /> <ci> c </ci> <ci> z </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> b </ci> <apply> <power /> <apply> <tan /> <apply> <times /> <ci> c </ci> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <ci> a </ci> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["\[Integral]", RowBox[List[FractionBox[RowBox[List["Cos", "[", RowBox[List["c_", " ", "z_"]], "]"]], SqrtBox[RowBox[List["a_", "+", RowBox[List["b_", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c_", " ", "z_"]], "]"]], "2"]]]]]]], RowBox[List["\[DifferentialD]", "z_"]]]]]], "]"]], "\[RuleDelayed]", FractionBox[RowBox[List[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], " ", SqrtBox[FractionBox[RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], SuperscriptBox[RowBox[List["(", RowBox[List["1", "+", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]], ")"]], "2"]]], " ", RowBox[List["Sec", "[", RowBox[List["c", " ", "z"]], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "2"]], " ", "\[ImaginaryI]", " ", RowBox[List["(", RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]], RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "a"]]]], "+", RowBox[List["4", " ", "\[ImaginaryI]", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["\[ImaginaryI]", " ", RowBox[List["ArcSinh", "[", RowBox[List[SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]], "]"]]]], ",", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]], RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]]]]], "]"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "-", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "a"]], " ", SqrtBox[FractionBox[RowBox[List[RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]], "-", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"]]], "a"]]]], "+", RowBox[List[SqrtBox[RowBox[List["-", FractionBox[RowBox[List["a", "-", RowBox[List["2", " ", "b"]], "+", RowBox[List["2", " ", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]]]], "a"]]]], " ", RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "2"], " ", RowBox[List["Tan", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]]]]]], ")"]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", SqrtBox[RowBox[List["-", FractionBox["a", RowBox[List["a", "-", RowBox[List["2", " ", RowBox[List["(", RowBox[List["b", "+", SqrtBox[RowBox[List["b", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "a"]], "+", "b"]], ")"]]]]]]], ")"]]]]]]]]]], " ", "c", " ", SqrtBox[RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b", "+", RowBox[List[RowBox[List["(", RowBox[List["a", "-", "b"]], ")"]], " ", RowBox[List["Cos", "[", RowBox[List["2", " ", "c", " ", "z"]], "]"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["Sec", "[", FractionBox[RowBox[List["c", " ", "z"]], "2"], "]"]], "4"]]]], " ", SqrtBox[RowBox[List["a", "+", RowBox[List["b", " ", SuperscriptBox[RowBox[List["Tan", "[", RowBox[List["c", " ", "z"]], "]"]], "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2002-12-18