|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/01.08.24.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Abs[Product[Tan[2^k x]^(1/2^k), {k, 0, Infinity}]] == 4 Sin[x]^2 /;
Element[x, Reals]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["Abs", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k", "=", "0"]], "\[Infinity]"], RadicalBox[RowBox[List["Tan", "[", RowBox[List[SuperscriptBox["2", "k"], " ", "x"]], "]"]], SuperscriptBox["2", "k"]]]], "]"]], "\[Equal]", RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]]]], "/;", RowBox[List["x", "\[Element]", "Reals"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[LeftBracketingBar]" </annotation> </semantics> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> ∞ </mi> </munderover> <mroot> <mrow> <mi> tan </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> <mo> ⁢ </mo> <mi> x </mi> </mrow> <mo> ) </mo> </mrow> <msup> <mn> 2 </mn> <mi> k </mi> </msup> </mroot> </mrow> <semantics> <mo> ❘ </mo> <annotation encoding='Mathematica'> "\[RightBracketingBar]" </annotation> </semantics> </mrow> <mo> ⩵ </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <msup> <mi> sin </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mi> x </mi> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> x </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <abs /> <apply> <product /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 0 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <power /> <apply> <tan /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <ci> x </ci> </apply> </apply> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <sin /> <ci> x </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <in /> <ci> x </ci> <reals /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Abs", "[", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["k_", "=", "0"]], "\[Infinity]"], SuperscriptBox[RowBox[List["Tan", "[", RowBox[List[SuperscriptBox["2", "k_"], " ", "x_"]], "]"]], FractionBox["1", SuperscriptBox["2", "k_"]]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["4", " ", SuperscriptBox[RowBox[List["Sin", "[", "x", "]"]], "2"]]], "/;", RowBox[List["x", "\[Element]", "Reals"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|