|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.54.20.0005.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[ArithmeticGeometricMean[a, b], {a, n}] ==
ArithmeticGeometricMean[a, b] KroneckerDelta[n] +
(Pi/(4 b^n)) ((b KroneckerDelta[n - 1])/EllipticK[((a - b)/(a + b))^2] +
b n n! Sum[((-1)^q/((q + 1)! (n - q - 1)!))
EllipticK[((a - b)/(a + b))^2]^(-q - 1)
Sum[\[Ellipsis] Sum[Product[Binomial[n - 1 - Sum[Subscript[k, j],
{j, 1, p - 1}], Subscript[k, p]], {p, 1, q - 1}]
Product[A[Subscript[k, i], a, b], {i, 1, q - 1}]
A[n - 1 - Sum[Subscript[k, j], {j, 1, q - 1}], a, b],
{Subscript[k, q - 1], 0, n - 1 - Sum[Subscript[k, j],
{j, 1, p}]}], {Subscript[k, 1], 0, n - 1 - Sum[Subscript[k, j],
{j, 1, p}]}, {Subscript[k, 2], 0, n - 1 - Sum[Subscript[k, j],
{j, 1, p}]}], {q, 1, n - 1}] + (a + b) (n + 1)!
Sum[((-1)^q/((q + 1)! (n - q)!)) EllipticK[((a - b)/(a + b))^2]^
(-q - 1) Sum[\[Ellipsis] Sum[Product[Binomial[n - Sum[Subscript[k,
j], {j, 1, p - 1}], Subscript[k, p]], {p, 1, q - 1}]
Product[A[Subscript[k, i], a, b], {i, 1, q - 1}]
A[n - Sum[Subscript[k, j], {j, 1, q - 1}], a, b],
{Subscript[k, q - 1], 0, n - Sum[Subscript[k, j], {j, 1, p}]}],
{Subscript[k, 1], 0, n - Sum[Subscript[k, j], {j, 1, p}]},
{Subscript[k, 2], 0, n - Sum[Subscript[k, j], {j, 1, p}]}],
{q, 1, n}]) /;
A[r, a, b] == EllipticK[((a - b)/(a + b))^2] KroneckerDelta[r] +
(Pi/2) Sum[(1/m!) Sum[(Pochhammer[2 s - m + 1, 2 (m - s)]/
((m - s)! 2^(m - 2 s))) ((a + b)/(a - b))^m
Hypergeometric2F1Regularized[1/2, 1/2, 1 - s, ((a - b)/(a + b))^2]
Sum[(-1)^q Binomial[m, q] ((a - b)/(a + b))^q
Sum[\[Ellipsis] Sum[KroneckerDelta[r, Sum[Subscript[u, i],
{i, 1, m - q}]] Multinomial[Subscript[u, 1], Subscript[u,
2], \[Ellipsis], Subscript[u, m - q]] Product[
KroneckerDelta[Subscript[u, i]] - (2 (-1)^Subscript[u, i]
b^(Subscript[u, i] + 1) Subscript[u, i]!)/(a + b)^
(Subscript[u, i] + 1), {i, 1, m - q}], {Subscript[u,
m - q], 0, r}], {Subscript[u, 1], 0, r}, {Subscript[u, 2], 0,
r}], {q, 0, m}], {s, 0, m}], {m, 1, r}] &&
Element[n, Integers] && n >= 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["a", ",", "n"]], "}"]]], RowBox[List["ArithmeticGeometricMean", "[", RowBox[List["a", ",", "b"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["ArithmeticGeometricMean", "[", RowBox[List["a", ",", "b"]], "]"]], " ", RowBox[List["KroneckerDelta", "[", "n", "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", RowBox[List["4", SuperscriptBox["b", "n"]]]], RowBox[List["(", RowBox[List[FractionBox[RowBox[List["b", " ", RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]]], "+", RowBox[List["b", " ", "n", " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["n", "-", "1"]]], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "q", "-", "1"]], ")"]], "!"]]]]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], RowBox[List[RowBox[List["-", "q"]], "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", RowBox[List["q", "-", "1"]]], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["p", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", SubscriptBox["k", "p"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["A", "[", RowBox[List[SubscriptBox["k", "i"], ",", "a", ",", "b"]], "]"]]]], ")"]], " ", RowBox[List["A", "[", RowBox[List[RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", "a", ",", "b"]], "]"]]]]]]]]]]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], "n"], RowBox[List[FractionBox[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "q"]], ")"]], "!"]]]]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], RowBox[List[RowBox[List["-", "q"]], "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", RowBox[List["q", "-", "1"]]], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["p", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", SubscriptBox["k", "p"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["A", "[", RowBox[List[SubscriptBox["k", "i"], ",", "a", ",", "b"]], "]"]]]], ")"]], " ", RowBox[List["A", "[", RowBox[List[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", "a", ",", "b"]], "]"]]]]]]]]]]]]]]]]]]]], ")"]]]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["A", "[", RowBox[List["r", ",", "a", ",", "b"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], " ", RowBox[List["KroneckerDelta", "[", "r", "]"]]]], "+", RowBox[List[FractionBox["\[Pi]", "2"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "r"], RowBox[List[FractionBox["1", RowBox[List["m", "!"]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "m"], RowBox[List[FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "s"]], "-", "m", "+", "1"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]]]]]], "]"]], " "]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]], "!"]], " ", SuperscriptBox["2", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]]], " "]]], SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]], ")"]], "m"], RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List["1", "-", "s"]], ",", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"]]], "]"]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "m"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "q"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", "1"], "=", "0"]], "r"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", "2"], "=", "0"]], "r"], RowBox[List["\[Ellipsis]", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", RowBox[List["m", "-", "q"]]], "=", "0"]], "r"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["r", ",", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], RowBox[List["m", "-", "q"]]], SubscriptBox["u", "i"]]]]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["u", "1"], ",", SubscriptBox["u", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["u", RowBox[List["m", "-", "q"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["m", "-", "q"]]], RowBox[List["(", RowBox[List[RowBox[List["KroneckerDelta", "[", SubscriptBox["u", "i"], "]"]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["u", "i"]], " ", SuperscriptBox["b", RowBox[List[SubscriptBox["u", "i"], "+", "1"]]], RowBox[List[SubscriptBox["u", "i"], "!"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], RowBox[List[SubscriptBox["u", "i"], "+", "1"]]]]]], ")"]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]], "\[And]", RowBox[List["n", "\[Element]", "Integers"]], "\[And]", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <semantics> <mi> agm </mi> <annotation-xml encoding='MathML-Content'> <ci> ArithmeticGeometricMean </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <semantics> <mi> agm </mi> <annotation-xml encoding='MathML-Content'> <ci> ArithmeticGeometricMean </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mi> p </mi> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "p"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mi> i </mi> </msub> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mi> p </mi> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "p"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mi> i </mi> </msub> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> r </mi> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "m", "+", "1"]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]]]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", "s"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["q", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> r </mi> <mo> , </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </munderover> <msub> <mi> u </mi> <mi> i </mi> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> u </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mo> … </mo> <mo> + </mo> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> </mrow> <mo> ; </mo> <msub> <mi> u </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <msub> <mi> u </mi> <mi> i </mi> </msub> </msub> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> ! </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <mrow> <mrow> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> n </mi> </msup> <mrow> <semantics> <mi> agm </mi> <annotation-xml encoding='MathML-Content'> <ci> ArithmeticGeometricMean </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> a </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <semantics> <mi> agm </mi> <annotation-xml encoding='MathML-Content'> <ci> ArithmeticGeometricMean </ci> </annotation-xml> </semantics> <mo> ( </mo> <mrow> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> n </mi> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mi> b </mi> <mi> n </mi> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mi> b </mi> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> </mfrac> <mo> + </mo> <mrow> <mi> b </mi> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <mrow> <mi> n </mi> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mi> p </mi> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]], "-", "1"]], Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "p"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mi> i </mi> </msub> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> n </mi> </munderover> <mrow> <mfrac> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> q </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> n </mi> <mo> - </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mi> q </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> k </mi> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> p </mi> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </munderover> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> p </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> p </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi> k </mi> <mi> p </mi> </msub> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], Identity, Rule[Editable, True]]], List[TagBox[SubscriptBox["k", "p"], Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <msub> <mi> k </mi> <mi> i </mi> </msub> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> n </mi> <mo> - </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> q </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </munderover> <msub> <mi> k </mi> <mi> j </mi> </msub> </mrow> </mrow> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> A </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> r </mi> <mo> , </mo> <mi> a </mi> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mi> r </mi> </msub> </mrow> <mo> + </mo> <mrow> <mfrac> <mi> π </mi> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> m </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mi> m </mi> <mo> ! </mo> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> s </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <mfrac> <mn> 1 </mn> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> <mo> ! </mo> </mrow> <mo> ⁢ </mo> <msup> <mn> 2 </mn> <mrow> <mi> m </mi> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> </mrow> </msup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <semantics> <msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> s </mi> </mrow> <mo> - </mo> <mi> m </mi> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mi> s </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </msub> <annotation encoding='Mathematica'> TagBox[SubscriptBox[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "s"]], "-", "m", "+", "1"]], ")"]], RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]]]]], Pochhammer] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> m </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 2 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 1 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> , </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> s </mi> </mrow> <mo> ; </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["2", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["1", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[RowBox[List[TagBox[FractionBox["1", "2"], Hypergeometric2F1Regularized, Rule[Editable, True]], ",", TagBox[FractionBox["1", "2"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[TagBox[TagBox[RowBox[List["1", "-", "s"]], Hypergeometric2F1Regularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], Hypergeometric2F1Regularized, Rule[Editable, False]], ";", TagBox[SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], Hypergeometric2F1Regularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], Hypergeometric2F1Regularized] </annotation> </semantics> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> q </mi> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> m </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mo> ⁢ </mo> <semantics> <mrow> <mo> ( </mo> <mtable> <mtr> <mtd> <mi> m </mi> </mtd> </mtr> <mtr> <mtd> <mi> q </mi> </mtd> </mtr> </mtable> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["(", GridBox[List[List[TagBox["m", Identity, Rule[Editable, True]]], List[TagBox["q", Identity, Rule[Editable, True]]]]], ")"]], InterpretTemplate[Function[Binomial[Slot[1], Slot[2]]]], Rule[Editable, False]] </annotation> </semantics> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <mi> b </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> </mfrac> <mo> ) </mo> </mrow> <mi> q </mi> </msup> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mn> 1 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <mo> … </mo> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mrow> <mi> r </mi> </munderover> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <mrow> <mi> r </mi> <mo> , </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </munderover> <msub> <mi> u </mi> <mi> i </mi> </msub> </mrow> </mrow> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <msub> <mi> u </mi> <mn> 1 </mn> </msub> <mo> + </mo> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> + </mo> <mo> … </mo> <mo> + </mo> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> </mrow> <mo> ; </mo> <msub> <mi> u </mi> <mn> 1 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> u </mi> <mn> 2 </mn> </msub> <mo> , </mo> <mo> … </mo> <mo> , </mo> <msub> <mi> u </mi> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </msub> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mrow> <mi> m </mi> <mo> - </mo> <mi> q </mi> </mrow> </munderover> <mrow> <mo> ( </mo> <mrow> <msub> <semantics> <mi> δ </mi> <annotation-xml encoding='MathML-Content'> <ci> KroneckerDelta </ci> </annotation-xml> </semantics> <msub> <mi> u </mi> <mi> i </mi> </msub> </msub> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> </msup> <mo> ⁢ </mo> <msup> <mi> b </mi> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> <mo> ⁢ </mo> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> ! </mo> </mrow> </mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mi> a </mi> <mo> + </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mrow> <msub> <mi> u </mi> <mi> i </mi> </msub> <mo> + </mo> <mn> 1 </mn> </mrow> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <mi> ℕ </mi> </mrow> </mrow> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["a_", ",", "n_"]], "}"]]]]], RowBox[List["ArithmeticGeometricMean", "[", RowBox[List["a_", ",", "b_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List[RowBox[List["ArithmeticGeometricMean", "[", RowBox[List["a", ",", "b"]], "]"]], " ", RowBox[List["KroneckerDelta", "[", "n", "]"]]]], "+", FractionBox[RowBox[List["\[Pi]", " ", RowBox[List["(", RowBox[List[FractionBox[RowBox[List["b", " ", RowBox[List["KroneckerDelta", "[", RowBox[List["n", "-", "1"]], "]"]]]], RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]]], "+", RowBox[List["b", " ", "n", " ", RowBox[List["n", "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], RowBox[List["n", "-", "1"]]], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], RowBox[List[RowBox[List["-", "q"]], "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", RowBox[List["q", "-", "1"]]], "=", "0"]], RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["p", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", SubscriptBox["k", "p"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["A", "[", RowBox[List[SubscriptBox["k", "i"], ",", "a", ",", "b"]], "]"]]]], ")"]], " ", RowBox[List["A", "[", RowBox[List[RowBox[List["n", "-", "1", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", "a", ",", "b"]], "]"]]]]]]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "q", "-", "1"]], ")"]], "!"]]]]]]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "+", "1"]], ")"]], "!"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "1"]], "n"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], RowBox[List[RowBox[List["-", "q"]], "-", "1"]]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "1"], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", "2"], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["k", RowBox[List["q", "-", "1"]]], "=", "0"]], RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], "p"], SubscriptBox["k", "j"]]]]]], RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["p", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["Binomial", "[", RowBox[List[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["p", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", SubscriptBox["k", "p"]]], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["q", "-", "1"]]], RowBox[List["A", "[", RowBox[List[SubscriptBox["k", "i"], ",", "a", ",", "b"]], "]"]]]], ")"]], " ", RowBox[List["A", "[", RowBox[List[RowBox[List["n", "-", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["j", "=", "1"]], RowBox[List["q", "-", "1"]]], SubscriptBox["k", "j"]]]]], ",", "a", ",", "b"]], "]"]]]]]]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["q", "+", "1"]], ")"]], "!"]], " ", RowBox[List[RowBox[List["(", RowBox[List["n", "-", "q"]], ")"]], "!"]]]]]]]]]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox["b", "n"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["A", "[", RowBox[List["r", ",", "a", ",", "b"]], "]"]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["EllipticK", "[", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"], "]"]], " ", RowBox[List["KroneckerDelta", "[", "r", "]"]]]], "+", RowBox[List[FractionBox["1", "2"], " ", "\[Pi]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["m", "=", "1"]], "r"], FractionBox[RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["s", "=", "0"]], "m"], FractionBox[RowBox[List[RowBox[List["Pochhammer", "[", RowBox[List[RowBox[List[RowBox[List["2", " ", "s"]], "-", "m", "+", "1"]], ",", RowBox[List["2", " ", RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]]]]]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "+", "b"]], RowBox[List["a", "-", "b"]]], ")"]], "m"], " ", RowBox[List["Hypergeometric2F1Regularized", "[", RowBox[List[FractionBox["1", "2"], ",", FractionBox["1", "2"], ",", RowBox[List["1", "-", "s"]], ",", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "2"]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["q", "=", "0"]], "m"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "q"], " ", RowBox[List["Binomial", "[", RowBox[List["m", ",", "q"]], "]"]], " ", SuperscriptBox[RowBox[List["(", FractionBox[RowBox[List["a", "-", "b"]], RowBox[List["a", "+", "b"]]], ")"]], "q"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", "1"], "=", "0"]], "r"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", "2"], "=", "0"]], "r"], RowBox[List["\[Ellipsis]", " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List[SubscriptBox["u", RowBox[List["m", "-", "q"]]], "=", "0"]], "r"], RowBox[List[RowBox[List["KroneckerDelta", "[", RowBox[List["r", ",", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["i", "=", "1"]], RowBox[List["m", "-", "q"]]], SubscriptBox["u", "i"]]]]], "]"]], " ", RowBox[List["Multinomial", "[", RowBox[List[SubscriptBox["u", "1"], ",", SubscriptBox["u", "2"], ",", "\[Ellipsis]", ",", SubscriptBox["u", RowBox[List["m", "-", "q"]]]]], "]"]], " ", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["i", "=", "1"]], RowBox[List["m", "-", "q"]]], RowBox[List["(", RowBox[List[RowBox[List["KroneckerDelta", "[", SubscriptBox["u", "i"], "]"]], "-", FractionBox[RowBox[List["2", " ", SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], SubscriptBox["u", "i"]], " ", SuperscriptBox["b", RowBox[List[SubscriptBox["u", "i"], "+", "1"]]], " ", RowBox[List[SubscriptBox["u", "i"], "!"]]]], SuperscriptBox[RowBox[List["(", RowBox[List["a", "+", "b"]], ")"]], RowBox[List[SubscriptBox["u", "i"], "+", "1"]]]]]], ")"]]]]]]]]]]]]]]]]]]]], RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["m", "-", "s"]], ")"]], "!"]], " ", SuperscriptBox["2", RowBox[List["m", "-", RowBox[List["2", " ", "s"]]]]]]]]]], RowBox[List["m", "!"]]]]]]]]]]], "&&", RowBox[List["n", "\[Element]", "Integers"]], "&&", RowBox[List["n", "\[GreaterEqual]", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|