Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DedekindEta






Mathematica Notation

Traditional Notation









Elliptic Functions > DedekindEta[z] > Differentiation > Low-order differentiation





http://functions.wolfram.com/09.49.20.0007.01









  


  










Input Form





D[DedekindEta[z], {z, 2}] == (-(I/(6 Pi^2 Sqrt[-z^2]))) DedekindEta[z] (z WeierstrassInvariants[{1, z}][[1]] - 6 (z WeierstrassPPrime[1, WeierstrassInvariants[{1, z}]] + (2 z + I Sqrt[-z^2]) WeierstrassZeta[1, WeierstrassInvariants[{1, z}]]^ 2))










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["DedekindEta", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["\[ImaginaryI]", RowBox[List["6", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]]]]], RowBox[List["DedekindEta", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["(", RowBox[List[RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]], "[", RowBox[List["[", "1", "]"]], "]"]], ")"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]]]], "]"]], "2"]]]]], ")"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <semantics> <mrow> <mi> &#951; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Eta]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[DedekindEta[Slot[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#63449; </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mi> &#8520; </mi> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#951; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Eta]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Identity, Rule[Editable, True], Rule[Selectable, True]], &quot;)&quot;]], InterpretTemplate[Function[DedekindEta[Slot[1]]]], Rule[Editable, False], Rule[Selectable, False]] </annotation> </semantics> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> z </mi> </mrow> <mo> + </mo> <mrow> <mi> &#8520; </mi> <mo> &#8290; </mo> <msqrt> <mrow> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mrow> <mi> &#950; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <semantics> <mn> 1 </mn> <annotation encoding='Mathematica'> TagBox[&quot;1&quot;, Rule[Editable, True]] </annotation> </semantics> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mi> z </mi> <mo> &#8290; </mo> <mrow> <msup> <mi> &#8472; </mi> <mo> &#8242; </mo> </msup> <mo> ( </mo> <mrow> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> , </mo> <mrow> <msub> <mi> g </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> , </mo> <mi> z </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> DedekindEta </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> DedekindEta </ci> <ci> z </ci> </apply> <apply> <plus /> <apply> <times /> <ci> z </ci> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> z </ci> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <apply> <ci> Zeta </ci> <apply> <ci> CompoundExpression </ci> <apply> <apply> <ci> Rule </ci> <ci> Editable </ci> <true /> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <ci> z </ci> <apply> <apply> <partialdiff /> <list> <cn type='integer'> 1 </cn> </list> <ci> &#8472; </ci> </apply> <apply> <ci> CompoundExpression </ci> <cn type='integer'> 1 </cn> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> <cn type='integer'> 1 </cn> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["DedekindEta", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["DedekindEta", "[", "z", "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List[RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]], "\[LeftDoubleBracket]", "1", "\[RightDoubleBracket]"]]]], "-", RowBox[List["6", " ", RowBox[List["(", RowBox[List[RowBox[List["z", " ", RowBox[List["WeierstrassPPrime", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]]]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["2", " ", "z"]], "+", RowBox[List["\[ImaginaryI]", " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["WeierstrassZeta", "[", RowBox[List["1", ",", RowBox[List["WeierstrassInvariants", "[", RowBox[List["{", RowBox[List["1", ",", "z"]], "}"]], "]"]]]], "]"]], "2"]]]]], ")"]]]]]], ")"]]]], RowBox[List["6", " ", SuperscriptBox["\[Pi]", "2"], " ", SqrtBox[RowBox[List["-", SuperscriptBox["z", "2"]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2007-05-02