Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











DedekindEta






Mathematica Notation

Traditional Notation









Elliptic Functions > DedekindEta[z] > Differentiation > Low-order differentiation





http://functions.wolfram.com/09.49.20.0003.01









  


  










Input Form





D[DedekindEta[z], {z, 2}] == (-(Pi^2/144)) DedekindEta[z] - (Pi^2/6) Sum[(-1)^k k (3 k - 1) (1 - 6 k + 18 k^2) E^(((Pi I)/12) I (6 k - 1)^2 z), {k, -Infinity, Infinity}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "2"]], "}"]]], RowBox[List["DedekindEta", "[", "z", "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["-", FractionBox[RowBox[List[" ", SuperscriptBox["\[Pi]", "2"]]], "144"]]], " ", RowBox[List["DedekindEta", "[", "z", "]"]]]], "-", RowBox[List[FractionBox[SuperscriptBox["\[Pi]", "2"], "6"], RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "k", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "k"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]], "+", RowBox[List["18", " ", SuperscriptBox["k", "2"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], "12"], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["6", " ", "k"]], "-", "1"]], ")"]], "2"], "z"]]]]]]]]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> &#8706; </mo> <mn> 2 </mn> </msup> <semantics> <mrow> <mi> &#951; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Eta]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[DedekindEta[Slot[1]]]]] </annotation> </semantics> </mrow> <mrow> <mo> &#8706; </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 144 </mn> </mfrac> </mrow> <mo> &#8290; </mo> <semantics> <mrow> <mi> &#951; </mi> <mo> &#8289; </mo> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[&quot;\[Eta]&quot;, &quot;(&quot;, TagBox[&quot;z&quot;, Rule[Editable, True]], &quot;)&quot;]], InterpretTemplate[Function[DedekindEta[Slot[1]]]]] </annotation> </semantics> </mrow> <mo> - </mo> <mrow> <mfrac> <msup> <mi> &#960; </mi> <mn> 2 </mn> </msup> <mn> 6 </mn> </mfrac> <mo> &#8290; </mo> <mrow> <munderover> <mo> &#8721; </mo> <mrow> <mi> k </mi> <mo> = </mo> <mrow> <mo> - </mo> <mi> &#8734; </mi> </mrow> </mrow> <mi> &#8734; </mi> </munderover> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> &#8290; </mo> <mi> k </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 18 </mn> <mo> &#8290; </mo> <msup> <mi> k </mi> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <msup> <mi> &#8519; </mi> <mrow> <mfrac> <mrow> <mi> &#960; </mi> <mo> &#8290; </mo> <mi> &#8520; </mi> </mrow> <mn> 12 </mn> </mfrac> <mo> &#8290; </mo> <mi> &#8520; </mi> <mo> &#8290; </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 6 </mn> <mo> &#8290; </mo> <mi> k </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> &#8290; </mo> <mi> z </mi> </mrow> </msup> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <cn type='integer'> 2 </cn> </degree> </bvar> <apply> <ci> DedekindEta </ci> <ci> z </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 144 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <ci> DedekindEta </ci> <ci> z </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 6 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <apply> <times /> <cn type='integer'> -1 </cn> <infinity /> </apply> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <ci> k </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 6 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <exponentiale /> <apply> <times /> <apply> <times /> <pi /> <imaginaryi /> <apply> <power /> <cn type='integer'> 12 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <imaginaryi /> <apply> <power /> <apply> <plus /> <apply> <times /> <cn type='integer'> 6 </cn> <ci> k </ci> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <ci> z </ci> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "2"]], "}"]]]]], RowBox[List["DedekindEta", "[", "z_", "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[FractionBox["1", "144"], " ", RowBox[List["(", RowBox[List["-", SuperscriptBox["\[Pi]", "2"]]], ")"]], " ", RowBox[List["DedekindEta", "[", "z", "]"]]]], "-", RowBox[List[FractionBox["1", "6"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", RowBox[List["-", "\[Infinity]"]]]], "\[Infinity]"], RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", "k", " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", "k"]], "-", "1"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "-", RowBox[List["6", " ", "k"]], "+", RowBox[List["18", " ", SuperscriptBox["k", "2"]]]]], ")"]], " ", SuperscriptBox["\[ExponentialE]", RowBox[List[FractionBox["1", "12"], " ", RowBox[List["(", RowBox[List["\[Pi]", " ", "\[ImaginaryI]"]], ")"]], " ", "\[ImaginaryI]", " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["6", " ", "k"]], "-", "1"]], ")"]], "2"], " ", "z"]]]]]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29