|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.55.17.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticExp[z, {a, b}] == EllipticExp[
z - I n Sqrt[8] Sqrt[(a - Sqrt[a^2 - 4 b])/b]
EllipticK[1 - (2 Sqrt[a^2 - 4 b])/(a + Sqrt[a^2 - 4 b])], {a, b}] /;
Element[n, Integers]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticExp", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]], "\[Equal]", RowBox[List["EllipticExp", "[", RowBox[List[RowBox[List["z", "-", RowBox[List["\[ImaginaryI]", " ", "n", " ", SqrtBox["8"], " ", SqrtBox[FractionBox[RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox[RowBox[List["2", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]]], "]"]]]]]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <mi> eexp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mi> eexp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> z </mi> <mo> - </mo> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <mi> n </mi> <mo> ⁢ </mo> <msqrt> <mn> 8 </mn> </msqrt> <mo> ⁢ </mo> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mi> b </mi> </mfrac> </msqrt> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mi> n </mi> <mo> ∈ </mo> <semantics> <mi> ℤ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalZ]", Function[Integers]] </annotation> </semantics> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> eexp </ci> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <ci> a </ci> </apply> <ci> b </ci> </apply> <apply> <ci> eexp </ci> <apply> <ci> CompoundExpression </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <imaginaryi /> <ci> n </ci> <apply> <power /> <cn type='integer'> 8 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <ci> a </ci> </apply> <ci> b </ci> </apply> </apply> <apply> <in /> <ci> n </ci> <integers /> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticExp", "[", RowBox[List["z_", ",", RowBox[List["{", RowBox[List["a_", ",", "b_"]], "}"]]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List["EllipticExp", "[", RowBox[List[RowBox[List["z", "-", RowBox[List["\[ImaginaryI]", " ", "n", " ", SqrtBox["8"], " ", SqrtBox[FractionBox[RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], "b"]], " ", RowBox[List["EllipticK", "[", RowBox[List["1", "-", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]]], "]"]]]]]], ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]], "/;", RowBox[List["n", "\[Element]", "Integers"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|