|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.53.06.0008.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticNomeQ[m] \[Proportional] EllipticNomeQ[Subscript[m, 0]] -
((Pi^2 EllipticNomeQ[Subscript[m, 0]])/(4 EllipticK[Subscript[m, 0]]^2
(-1 + Subscript[m, 0]) Subscript[m, 0])) (m - Subscript[m, 0]) +
((Pi^2 EllipticNomeQ[Subscript[m, 0]])/(32 EllipticK[Subscript[m, 0]]^4
(-1 + Subscript[m, 0])^2 Subscript[m, 0]^2))
(Pi^2 - 4 EllipticE[Subscript[m, 0]] EllipticK[Subscript[m, 0]] +
4 Subscript[m, 0] EllipticK[Subscript[m, 0]]^2)
(m - Subscript[m, 0])^2 - ((Pi^2 EllipticNomeQ[Subscript[m, 0]])/
(384 EllipticK[Subscript[m, 0]]^6 (-1 + Subscript[m, 0])^3
Subscript[m, 0]^3)) (Pi^4 + 4 EllipticK[Subscript[m, 0]]
(3 Subscript[m, 0] Pi^2 EllipticK[Subscript[m, 0]] +
6 EllipticE[Subscript[m, 0]]^2 EllipticK[Subscript[m, 0]] +
(2 - 2 Subscript[m, 0] + 8 Subscript[m, 0]^2)
EllipticK[Subscript[m, 0]]^3 - 3 EllipticE[Subscript[m, 0]]
(Pi^2 + 4 Subscript[m, 0] EllipticK[Subscript[m, 0]]^2)))
(m - Subscript[m, 0])^3 + ((Pi^2 EllipticNomeQ[Subscript[m, 0]])/
(6144 EllipticK[Subscript[m, 0]]^8 (-1 + Subscript[m, 0])^4
Subscript[m, 0]^4)) (Pi^6 + 8 EllipticK[Subscript[m, 0]]
(-24 EllipticE[Subscript[m, 0]]^3 EllipticK[Subscript[m, 0]]^2 +
3 Pi^4 EllipticK[Subscript[m, 0]] Subscript[m, 0] +
18 EllipticE[Subscript[m, 0]]^2 EllipticK[Subscript[m, 0]]
(Pi^2 + 4 EllipticK[Subscript[m, 0]]^2 Subscript[m, 0]) +
4 EllipticK[Subscript[m, 0]]^5 (-1 + 4 Subscript[m, 0])
(2 + Subscript[m, 0] (-1 + 3 Subscript[m, 0])) +
2 Pi^2 EllipticK[Subscript[m, 0]]^3 (2 + Subscript[m, 0]
(-2 + 11 Subscript[m, 0])) + EllipticE[Subscript[m, 0]]
(-3 Pi^4 - 36 Pi^2 EllipticK[Subscript[m, 0]]^2 Subscript[m, 0] -
8 EllipticK[Subscript[m, 0]]^4 (2 + Subscript[m, 0]
(-2 + 11 Subscript[m, 0]))))) (m - Subscript[m, 0])^4 -
((Pi^2 EllipticNomeQ[Subscript[m, 0]])/
(122880 EllipticK[Subscript[m, 0]]^10 (-1 + Subscript[m, 0])^5
Subscript[m, 0]^5)) (Pi^8 + 8 EllipticK[Subscript[m, 0]]
(240 EllipticE[Subscript[m, 0]]^4 EllipticK[Subscript[m, 0]]^3 +
5 Pi^6 EllipticK[Subscript[m, 0]] Subscript[m, 0] -
240 EllipticE[Subscript[m, 0]]^3 EllipticK[Subscript[m, 0]]^2
(Pi^2 + 4 EllipticK[Subscript[m, 0]]^2 Subscript[m, 0]) +
20 Pi^2 EllipticK[Subscript[m, 0]]^5 (-1 + 5 Subscript[m, 0])
(2 + Subscript[m, 0] (-1 + 4 Subscript[m, 0])) +
10 Pi^4 EllipticK[Subscript[m, 0]]^3 (1 + Subscript[m, 0]
(-1 + 7 Subscript[m, 0])) + 60 EllipticE[Subscript[m, 0]]^2
EllipticK[Subscript[m, 0]] (Pi^4 + 12 Pi^2 EllipticK[Subscript[m, 0]]^
2 Subscript[m, 0] + 4 EllipticK[Subscript[m, 0]]^4
(1 + Subscript[m, 0] (-1 + 7 Subscript[m, 0]))) +
5 EllipticE[Subscript[m, 0]] (-Pi^6 -
24 Pi^4 EllipticK[Subscript[m, 0]]^2 Subscript[m, 0] -
16 EllipticK[Subscript[m, 0]]^6 (-1 + 5 Subscript[m, 0])
(2 + Subscript[m, 0] (-1 + 4 Subscript[m, 0])) -
24 Pi^2 EllipticK[Subscript[m, 0]]^4 (1 + Subscript[m, 0]
(-1 + 7 Subscript[m, 0]))) + 32 EllipticK[Subscript[m, 0]]^7
(4 + Subscript[m, 0] (-18 + Subscript[m, 0]
(37 + Subscript[m, 0] (-23 + 24 Subscript[m, 0]))))))
(m - Subscript[m, 0])^5 + \[Ellipsis] /; (m -> Subscript[m, 0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "\[Proportional]", RowBox[List[RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], " ", SubscriptBox["m", "0"]]]], RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]]]], "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]]]], RowBox[List["32", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], "2"], " ", SubsuperscriptBox["m", "0", "2"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["4", " ", RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]]]], "+", RowBox[List["4", " ", SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "2"]]], " ", "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]]]], RowBox[List["384", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], "3"], " ", SubsuperscriptBox["m", "0", "3"]]]], RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "4"], "+", RowBox[List["4", " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubscriptBox["m", "0"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]]]], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", SubscriptBox["m", "0"]]], "+", RowBox[List["8", " ", SubsuperscriptBox["m", "0", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "3"]]], "-", RowBox[List["3", " ", RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SubscriptBox["m", "0"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "3"]]], " ", "+", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]]]], RowBox[List["6144", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "8"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], "4"], " ", SubsuperscriptBox["m", "0", "4"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "6"], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "3"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", SubscriptBox["m", "0"]]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", SubscriptBox["m", "0"]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["m", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["11", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["\[Pi]", "4"]]], "-", RowBox[List["36", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", SubscriptBox["m", "0"]]], "-", RowBox[List["8", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["11", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "4"]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["m", "0"], "]"]]]], RowBox[List["122880", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "10"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["m", "0"]]], ")"]], "5"], " ", SubsuperscriptBox["m", "0", "5"]]]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "8"], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "3"]]], "+", RowBox[List["5", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", SubscriptBox["m", "0"]]], "-", RowBox[List["240", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "3"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", SubscriptBox["m", "0"]]]]], ")"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", SubscriptBox["m", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["10", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "4"], "+", RowBox[List["12", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", SubscriptBox["m", "0"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["EllipticE", "[", SubscriptBox["m", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "6"]]], "-", RowBox[List["24", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "2"], " ", SubscriptBox["m", "0"]]], "-", RowBox[List["16", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", SubscriptBox["m", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["24", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["32", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["m", "0"], "]"]], "7"], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "18"]], "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List["37", "+", RowBox[List[SubscriptBox["m", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "23"]], "+", RowBox[List["24", " ", SubscriptBox["m", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["m", "0"]]], ")"]], "5"]]], "+", "\[Ellipsis]"]]]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["m", "0"]]], ")"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> ∝ </mo> <mrow> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <mtext> </mtext> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 384 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 3 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 2 </mn> </msubsup> </mrow> <mo> - </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 6 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 6144 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 8 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 4 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 18 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 8 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 11 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 36 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 3 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mrow> <mn> 122880 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 10 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> <mo> ⁢ </mo> <msubsup> <mi> m </mi> <mn> 0 </mn> <mn> 5 </mn> </msubsup> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 8 </mn> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 32 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 23 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 37 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mn> 18 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 4 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 7 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 20 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 10 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 240 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 3 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 6 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 60 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> + </mo> <mrow> <mn> 12 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <mrow> <mi> E </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mo> - </mo> <mn> 16 </mn> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 5 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 6 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mn> 7 </mn> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 4 </mn> </msup> </mrow> <mo> - </mo> <mrow> <mn> 24 </mn> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 4 </mn> </msup> <mo> ⁢ </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> - </mo> <msup> <mi> π </mi> <mn> 6 </mn> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msup> <mi> π </mi> <mn> 8 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 5 </mn> </msup> </mrow> <mo> + </mo> <mo> … </mo> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <msub> <mi> m </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <ci> Proportional </ci> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 384 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 6 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 6144 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 8 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 18 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -8 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 11 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -2 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 36 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 3 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> EllipticNomeQ </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 122880 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 10 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='integer'> 5 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 8 </cn> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 32 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -23 </cn> </apply> </apply> <cn type='integer'> 37 </cn> </apply> </apply> <cn type='integer'> -18 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 7 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 20 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 10 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 240 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 3 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 60 </cn> <apply> <power /> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 12 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> </apply> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> EllipticE </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> -16 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 5 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 6 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <plus /> <apply> <times /> <cn type='integer'> 7 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 4 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 24 </cn> <apply> <power /> <pi /> <cn type='integer'> 4 </cn> </apply> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <pi /> <cn type='integer'> 6 </cn> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <pi /> <cn type='integer'> 8 </cn> </apply> </apply> <apply> <power /> <apply> <plus /> <ci> m </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> <cn type='integer'> 5 </cn> </apply> </apply> </apply> <ci> … </ci> </apply> </apply> <apply> <ci> Rule </ci> <ci> m </ci> <apply> <ci> Subscript </ci> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticNomeQ", "[", "m_", "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], " ", SubscriptBox["mm", "0"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "-", RowBox[List["4", " ", RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]]]], "+", RowBox[List["4", " ", SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "2"]]], RowBox[List["32", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "4"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], "2"], " ", SubsuperscriptBox["mm", "0", "2"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "4"], "+", RowBox[List["4", " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["3", " ", SubscriptBox["mm", "0"], " ", SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]]]], "+", RowBox[List["6", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List["2", "-", RowBox[List["2", " ", SubscriptBox["mm", "0"]]], "+", RowBox[List["8", " ", SubsuperscriptBox["mm", "0", "2"]]]]], ")"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "3"]]], "-", RowBox[List["3", " ", RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SubscriptBox["mm", "0"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "3"]]], RowBox[List["384", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "6"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], "3"], " ", SubsuperscriptBox["mm", "0", "3"]]]], "+", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "6"], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "24"]], " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "3"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"]]], "+", RowBox[List["3", " ", SuperscriptBox["\[Pi]", "4"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", SubscriptBox["mm", "0"]]], "+", RowBox[List["18", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", SubscriptBox["mm", "0"]]]]], ")"]]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["mm", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["3", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["2", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "3"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["11", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["-", "3"]], " ", SuperscriptBox["\[Pi]", "4"]]], "-", RowBox[List["36", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", SubscriptBox["mm", "0"]]], "-", RowBox[List["8", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "2"]], "+", RowBox[List["11", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "4"]]], RowBox[List["6144", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "8"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], "4"], " ", SubsuperscriptBox["mm", "0", "4"]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], " ", RowBox[List["EllipticNomeQ", "[", SubscriptBox["mm", "0"], "]"]]]], ")"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "8"], "+", RowBox[List["8", " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["240", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "3"]]], "+", RowBox[List["5", " ", SuperscriptBox["\[Pi]", "6"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", SubscriptBox["mm", "0"]]], "-", RowBox[List["240", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "3"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "2"], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", SubscriptBox["mm", "0"]]]]], ")"]]]], "+", RowBox[List["20", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "5"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", SubscriptBox["mm", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["10", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "3"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["60", " ", SuperscriptBox[RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[SuperscriptBox["\[Pi]", "4"], "+", RowBox[List["12", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", SubscriptBox["mm", "0"]]], "+", RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["5", " ", RowBox[List["EllipticE", "[", SubscriptBox["mm", "0"], "]"]], " ", RowBox[List["(", RowBox[List[RowBox[List["-", SuperscriptBox["\[Pi]", "6"]]], "-", RowBox[List["24", " ", SuperscriptBox["\[Pi]", "4"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "2"], " ", SubscriptBox["mm", "0"]]], "-", RowBox[List["16", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "6"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["5", " ", SubscriptBox["mm", "0"]]]]], ")"]], " ", RowBox[List["(", RowBox[List["2", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["4", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]], "-", RowBox[List["24", " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "4"], " ", RowBox[List["(", RowBox[List["1", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", RowBox[List["7", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]], "+", RowBox[List["32", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "7"], " ", RowBox[List["(", RowBox[List["4", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "18"]], "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List["37", "+", RowBox[List[SubscriptBox["mm", "0"], " ", RowBox[List["(", RowBox[List[RowBox[List["-", "23"]], "+", RowBox[List["24", " ", SubscriptBox["mm", "0"]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]]]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List["m", "-", SubscriptBox["mm", "0"]]], ")"]], "5"]]], RowBox[List["122880", " ", SuperscriptBox[RowBox[List["EllipticK", "[", SubscriptBox["mm", "0"], "]"]], "10"], " ", SuperscriptBox[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", SubscriptBox["mm", "0"]]], ")"]], "5"], " ", SubsuperscriptBox["mm", "0", "5"]]]], "+", "\[Ellipsis]"]], "/;", RowBox[List["(", RowBox[List["m", "\[Rule]", SubscriptBox["mm", "0"]]], ")"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|