|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.53.25.0001.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Limit[(1/m^4) (EllipticNomeQ[m] - (m/16 + m^2/32 + (21 m^3)/1024 +
(31 m^4)/2048)), m -> 0] == 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["Limit", "[", RowBox[List[RowBox[List[FractionBox["1", SuperscriptBox["m", "4"]], RowBox[List["(", RowBox[List[RowBox[List["EllipticNomeQ", "[", "m", "]"]], "-", RowBox[List["(", RowBox[List[FractionBox["m", "16"], "+", FractionBox[SuperscriptBox["m", "2"], "32"], "+", FractionBox[RowBox[List["21", " ", SuperscriptBox["m", "3"]]], "1024"], "+", FractionBox[RowBox[List["31", " ", SuperscriptBox["m", "4"]]], "2048"]]], ")"]]]], ")"]]]], ",", RowBox[List["m", "\[Rule]", "0"]]]], "]"]], "\[Equal]", "0"]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <munder> <mi> lim </mi> <mrow> <mi> m </mi> <semantics> <mo> → </mo> <annotation encoding='Mathematica'> "\[Rule]" </annotation> </semantics> <mn> 0 </mn> </mrow> </munder> <mo> ⁢ </mo> <mtext>   </mtext> <mrow> <mfrac> <mn> 1 </mn> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mo> ( </mo> <mrow> <mfrac> <mrow> <mn> 31 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 4 </mn> </msup> </mrow> <mn> 2048 </mn> </mfrac> <mo> + </mo> <mfrac> <mrow> <mn> 21 </mn> <mo> ⁢ </mo> <msup> <mi> m </mi> <mn> 3 </mn> </msup> </mrow> <mn> 1024 </mn> </mfrac> <mo> + </mo> <mfrac> <msup> <mi> m </mi> <mn> 2 </mn> </msup> <mn> 32 </mn> </mfrac> <mo> + </mo> <mfrac> <mi> m </mi> <mn> 16 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> ⩵ </mo> <mn> 0 </mn> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <limit /> <bvar> <ci> m </ci> </bvar> <condition> <apply> <tendsto /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </condition> <apply> <times /> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <plus /> <apply> <times /> <cn type='integer'> 31 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 4 </cn> </apply> <apply> <power /> <cn type='integer'> 2048 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <cn type='integer'> 21 </cn> <apply> <power /> <ci> m </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <cn type='integer'> 1024 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <apply> <power /> <ci> m </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <cn type='integer'> 32 </cn> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <times /> <ci> m </ci> <apply> <power /> <cn type='integer'> 16 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["Limit", "[", RowBox[List[FractionBox[RowBox[List[RowBox[List["EllipticNomeQ", "[", "m_", "]"]], "-", RowBox[List["(", RowBox[List[FractionBox["m_", "16"], "+", FractionBox[SuperscriptBox["m_", "2"], "32"], "+", FractionBox[RowBox[List["21", " ", SuperscriptBox["m_", "3"]]], "1024"], "+", FractionBox[RowBox[List["31", " ", SuperscriptBox["m_", "4"]]], "2048"]]], ")"]]]], SuperscriptBox["m_", "4"]], ",", RowBox[List["m_", "\[Rule]", "0"]]]], "]"]], "]"]], "\[RuleDelayed]", "0"]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|