|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.04.27.0011.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EllipticTheta[4, z, q] == Product[1 - q^(2 n), {n, 1, Infinity}]
Product[1 - q^(2 n - 1), {n, 1, Infinity}]^2
Exp[-((2 Subscript[\[Eta], 1] Subscript[\[Omega], 1] z^2)/Pi^2)]
WeierstrassSigma[3, (2 Subscript[\[Omega], 1] z)/Pi,
{Subscript[g, 2], Subscript[g, 3]}] /;
{Subscript[\[Omega], 1], Subscript[\[Omega], 3]} ==
WeierstrassHalfPeriods[{Subscript[g, 2], Subscript[g, 3]}] &&
Subscript[\[Eta], 1] == WeierstrassZeta[Subscript[\[Omega], 1],
{Subscript[g, 2], Subscript[g, 3]}] &&
q == Exp[Pi I (Subscript[\[Omega], 3]/Subscript[\[Omega], 1])]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "z", ",", "q"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", "n"]]]]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "2"], " ", RowBox[List["Exp", "[", RowBox[List["-", FractionBox[RowBox[List["2", SubscriptBox["\[Eta]", "1"], " ", SubscriptBox["\[Omega]", "1"], " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]], "]"]], RowBox[List["WeierstrassSigma", "[", RowBox[List["3", ",", FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"], "z"]], "\[Pi]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "\[And]", RowBox[List[SubscriptBox["\[Eta]", "1"], "\[Equal]", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "\[And]", RowBox[List["q", "\[Equal]", RowBox[List["Exp", "[", RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", FractionBox[SubscriptBox["\[Omega]", "3"], SubscriptBox["\[Omega]", "1"]]]], "]"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msub> <mi> ϑ </mi> <mn> 4 </mn> </msub> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mi> q </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <munderover> <mo> ∏ </mo> <mrow> <mi> n </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> q </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> n </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> η </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <msup> <mi> π </mi> <mn> 2 </mn> </msup> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <semantics> <mrow> <msub> <mi> σ </mi> <mn> 3 </mn> </msub> <mo> ( </mo> <mrow> <mrow> <mfrac> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> ⁢ </mo> <mi> z </mi> </mrow> <mi> π </mi> </mfrac> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List[SubscriptBox["\[Sigma]", "3"], "(", RowBox[List[RowBox[List[TagBox[FractionBox[RowBox[List["2", SubscriptBox["\[Omega]", "1"], "z"]], "\[Pi]"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassSigma[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mrow> <mo> { </mo> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> , </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <mo> } </mo> </mrow> <mo> ⩵ </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> <mstyle scriptlevel='0'> <mo> , </mo> </mstyle> <mrow> <mstyle scriptlevel='0'> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mstyle> <mo> ( </mo> <mstyle scriptlevel='0'> <mrow> <msub> <mi> g </mi> <mn> 2 </mn> </msub> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> </mstyle> <mstyle scriptlevel='0'> <mo> ) </mo> </mstyle> </mrow> </mrow> <mstyle scriptlevel='0'> <mo> } </mo> </mstyle> </mrow> </mrow> <mo> ∧ </mo> <mrow> <msub> <mi> η </mi> <mn> 1 </mn> </msub> <mo> ⩵ </mo> <semantics> <mrow> <mi> ζ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> <mo> ; </mo> <msub> <mi> g </mi> <mn> 2 </mn> </msub> </mrow> <mo> , </mo> <msub> <mi> g </mi> <mn> 3 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <annotation encoding='Mathematica'> TagBox[RowBox[List["\[Zeta]", "(", RowBox[List[RowBox[List[TagBox[SubscriptBox["\[Omega]", "1"], Rule[Editable, True]], ";", TagBox[SubscriptBox["g", "2"], Rule[Editable, True]]]], ",", TagBox[SubscriptBox["g", "3"], Rule[Editable, True]]]], ")"]], InterpretTemplate[Function[WeierstrassZeta[Slot[1], List[Slot[2], Slot[3]]]]]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <mi> q </mi> <mo> ⩵ </mo> <mrow> <mi> exp </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> π </mi> <mo> ⁢ </mo> <mi> ⅈ </mi> <mo> ⁢ </mo> <msub> <mi> ω </mi> <mn> 3 </mn> </msub> </mrow> <msub> <mi> ω </mi> <mn> 1 </mn> </msub> </mfrac> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> EllipticTheta </ci> <cn type='integer'> 4 </cn> <ci> z </ci> <ci> q </ci> </apply> <apply> <times /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <product /> <bvar> <ci> n </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> q </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> n </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <exp /> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <ci> WeierstrassSigma </ci> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <ci> z </ci> <apply> <power /> <pi /> <cn type='integer'> -1 </cn> </apply> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> </apply> <apply> <and /> <apply> <eq /> <list> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> </list> <list> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> <apply> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </apply> </list> </apply> <apply> <eq /> <apply> <ci> Subscript </ci> <ci> η </ci> <cn type='integer'> 1 </cn> </apply> <apply> <ci> WeierstrassZeta </ci> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <list> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 2 </cn> </apply> <apply> <ci> Subscript </ci> <ci> g </ci> <cn type='integer'> 3 </cn> </apply> </list> </apply> </apply> <apply> <eq /> <ci> q </ci> <apply> <exp /> <apply> <times /> <pi /> <imaginaryi /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 3 </cn> </apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ω </ci> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["EllipticTheta", "[", RowBox[List["4", ",", "z_", ",", "q_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List["2", " ", "n"]]]]], ")"]]]], ")"]], " ", SuperscriptBox[RowBox[List["(", RowBox[List[UnderoverscriptBox["\[Product]", RowBox[List["n", "=", "1"]], "\[Infinity]"], RowBox[List["(", RowBox[List["1", "-", SuperscriptBox["q", RowBox[List[RowBox[List["2", " ", "n"]], "-", "1"]]]]], ")"]]]], ")"]], "2"], " ", SuperscriptBox["\[ExponentialE]", RowBox[List["-", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Eta]", "1"], " ", SubscriptBox["\[Omega]", "1"], " ", SuperscriptBox["z", "2"]]], SuperscriptBox["\[Pi]", "2"]]]]], " ", RowBox[List["WeierstrassSigma", "[", RowBox[List["3", ",", FractionBox[RowBox[List["2", " ", SubscriptBox["\[Omega]", "1"], " ", "z"]], "\[Pi]"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "/;", RowBox[List[RowBox[List[RowBox[List["{", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", SubscriptBox["\[Omega]", "3"]]], "}"]], "\[Equal]", RowBox[List["WeierstrassHalfPeriods", "[", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]], "]"]]]], "&&", RowBox[List[SubscriptBox["\[Eta]", "1"], "\[Equal]", RowBox[List["WeierstrassZeta", "[", RowBox[List[SubscriptBox["\[Omega]", "1"], ",", RowBox[List["{", RowBox[List[SubscriptBox["g", "2"], ",", SubscriptBox["g", "3"]]], "}"]]]], "]"]]]], "&&", RowBox[List["q", "\[Equal]", SuperscriptBox["\[ExponentialE]", FractionBox[RowBox[List["\[Pi]", " ", "\[ImaginaryI]", " ", SubscriptBox["\[Omega]", "3"]]], SubscriptBox["\[Omega]", "1"]]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|