|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.37.07.0003.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiCD[z, m] == InverseJacobiCD[Subscript[z, 0], m] -
((Sqrt[1 - m z^2] JacobiSN[InverseJacobiCD[z, m], m])/Sqrt[1 - z^2])
Integrate[1/(Sqrt[1 - t^2] Sqrt[1 - m t^2]), {t, Subscript[z, 0], z}] /;
!Exists[\[Tau], {Element[\[Tau], Reals], 0 < \[Tau] < 1},
Im[1 - (Subscript[z, 0] + \[Tau] (z - Subscript[z, 0]))^2] == 0 &&
1 - (Subscript[z, 0] + \[Tau] (z - Subscript[z, 0]))^2 < 0 &&
Im[1 - m (Subscript[z, 0] + \[Tau] (z - Subscript[z, 0]))^2] == 0 &&
1 - m (Subscript[z, 0] + \[Tau] (z - Subscript[z, 0]))^2 < 0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[RowBox[List["InverseJacobiCD", "[", RowBox[List[SubscriptBox["z", "0"], ",", "m"]], "]"]], "-", RowBox[List[FractionBox[RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["InverseJacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]], RowBox[List[SubsuperscriptBox["\[Integral]", SubscriptBox["z", "0"], "z"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["t", "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]]]]]], "/;", " ", RowBox[List["Not", "[", RowBox[List["Exists", "[", RowBox[List["\[Tau]", ",", " ", RowBox[List["{", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], ",", " ", RowBox[List["0", "<", "\[Tau]", "<", "1"]]]], "}"]], ",", RowBox[List[RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]], ")"]], "2"]]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]], ")"]], "2"]]], "<", "0"]], "\[And]", RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", RowBox[List["m", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]], ")"]], "2"]]]]], "]"]], "\[Equal]", "0"]], "\[And]", RowBox[List[RowBox[List["1", "-", RowBox[List["m", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["z", "0"], "+", RowBox[List["\[Tau]", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["z", "0"]]], ")"]]]]]], ")"]], "2"]]]]], "<", "0"]]]]]], "]"]], "]"]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mrow> <mrow> <msup> <mi> cd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <mfrac> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> <mo> ⁢ </mo> <mrow> <mi> sn </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cd </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <msubsup> <mo> ∫ </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> <mi> z </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mi> t </mi> <mn> 2 </mn> </msup> </mrow> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mo> ¬ </mo> <mrow> <msub> <mo> ∃ </mo> <mrow> <mi> τ </mi> <mo> , </mo> <mrow> <mo> { </mo> <mrow> <mrow> <mi> τ </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[List[], Reals]] </annotation> </semantics> </mrow> <mo> , </mo> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> τ </mi> <mo> < </mo> <mn> 1 </mn> </mrow> </mrow> <mo> } </mo> </mrow> </mrow> </msub> <mrow> <mo> ( </mo> <mrow> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> τ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> τ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> <mo> < </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mi> Im </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> τ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> ) </mo> </mrow> <mo>  </mo> <mn> 0 </mn> </mrow> <mo> ∧ </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mrow> <mi> m </mi> <mo> ⁢ </mo> <msup> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> τ </mi> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mi> z </mi> <mo> - </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <msub> <mi> z </mi> <mn> 0 </mn> </msub> </mrow> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mrow> <mo> < </mo> <mn> 0 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <plus /> <apply> <ci> InverseJacobiCD </ci> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> JacobiSN </ci> <apply> <ci> InverseJacobiCD </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <apply> <power /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </lowlimit> <uplimit> <ci> z </ci> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <not /> <apply> <exists /> <bvar> <ci> τ </ci> </bvar> <bvar> <list> <apply> <in /> <ci> τ </ci> <reals /> </apply> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> τ </ci> <cn type='integer'> 1 </cn> </apply> </list> </bvar> <apply> <and /> <apply> <eq /> <apply> <imaginary /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> τ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> τ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <eq /> <apply> <imaginary /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> τ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> <apply> <lt /> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <apply> <power /> <apply> <plus /> <apply> <times /> <ci> τ </ci> <apply> <plus /> <ci> z </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> <apply> <ci> Subscript </ci> <ci> z </ci> <cn type='integer'> 0 </cn> </apply> </apply> <cn type='integer'> 2 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiCD", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["InverseJacobiCD", "[", RowBox[List[SubscriptBox["zz", "0"], ",", "m"]], "]"]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["z", "2"]]]]]], " ", RowBox[List["JacobiSN", "[", RowBox[List[RowBox[List["InverseJacobiCD", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]], ")"]], " ", RowBox[List[SubsuperscriptBox["\[Integral]", SubscriptBox["zz", "0"], "z"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List["1", "-", SuperscriptBox["t", "2"]]]], " ", SqrtBox[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox["t", "2"]]]]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], SqrtBox[RowBox[List["1", "-", SuperscriptBox["z", "2"]]]]]]], "/;", RowBox[List["!", RowBox[List[SubscriptBox["\[Exists]", RowBox[List["\[Tau]", ",", RowBox[List["{", RowBox[List[RowBox[List["\[Tau]", "\[Element]", "Reals"]], ",", RowBox[List["0", "<", "\[Tau]", "<", "1"]]]], "}"]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]], ")"]], "2"]]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List["1", "-", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]], ")"]], "2"]]], "<", "0"]], "&&", RowBox[List[RowBox[List["Im", "[", RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]], ")"]], "2"]]]]], "]"]], "\[Equal]", "0"]], "&&", RowBox[List[RowBox[List["1", "-", RowBox[List["m", " ", SuperscriptBox[RowBox[List["(", RowBox[List[SubscriptBox["zz", "0"], "+", RowBox[List["\[Tau]", " ", RowBox[List["(", RowBox[List["z", "-", SubscriptBox["zz", "0"]]], ")"]]]]]], ")"]], "2"]]]]], "<", "0"]]]], ")"]]]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|