Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











InverseJacobiCS






Mathematica Notation

Traditional Notation









Elliptic Functions > InverseJacobiCS[z,m] > Differentiation > Low-order differentiation > With respect to m





http://functions.wolfram.com/09.39.20.0004.02









  


  










Input Form





D[InverseJacobiCS[z, m], m] == (-(1/(2 (-1 + m) m (1 + z^2)))) ((1 + z^2) EllipticE[JacobiAmplitude[InverseJacobiCS[z, m], m], m] + (-1 + m) (1 + z^2) InverseJacobiCS[z, m] - m z JacobiND[InverseJacobiCS[z, m], m])










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", "m"], RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List["-", FractionBox["1", RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]]]]], RowBox[List["(", RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", RowBox[List["m", " ", "z", " ", RowBox[List["JacobiND", "[", RowBox[List[RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], ")"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <mo> &#8706; </mo> <mrow> <msup> <mi> cs </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> &#8706; </mo> <mi> m </mi> </mrow> </mfrac> <mo> &#10869; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <mrow> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mi> E </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cs </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mrow> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mrow> <msup> <mi> cs </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> - </mo> <mrow> <mi> m </mi> <mo> &#8290; </mo> <mi> z </mi> <mo> &#8290; </mo> <mrow> <mi> nd </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> cs </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> &#10072; </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mo> &#8290; </mo> <mi> m </mi> <mo> &#8290; </mo> <mrow> <mo> ( </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> m </ci> </bvar> <apply> <ci> InverseJacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <plus /> <apply> <times /> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> EllipticE </ci> <apply> <ci> JacobiAmplitude </ci> <apply> <ci> InverseJacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <ci> InverseJacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> m </ci> <ci> z </ci> <apply> <ci> JacobiND </ci> <apply> <ci> InverseJacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> <ci> m </ci> </apply> </apply> </apply> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <ci> m </ci> <apply> <plus /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["m_"]]], RowBox[List["InverseJacobiCS", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List["-", FractionBox[RowBox[List[RowBox[List[RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["EllipticE", "[", RowBox[List[RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]], ",", "m"]], "]"]]]], "+", RowBox[List[RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]], " ", RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "-", RowBox[List["m", " ", "z", " ", RowBox[List["JacobiND", "[", RowBox[List[RowBox[List["InverseJacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]], ",", "m"]], "]"]]]]]], RowBox[List["2", " ", RowBox[List["(", RowBox[List[RowBox[List["-", "1"]], "+", "m"]], ")"]], " ", "m", " ", RowBox[List["(", RowBox[List["1", "+", SuperscriptBox["z", "2"]]], ")"]]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29