|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.43.27.0013.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiNC[z, m] == (I/Sqrt[m]) (-InverseJacobiSN[z, (m - 1)/m] +
EllipticK[(m - 1)/m]) /; 0 < z < 1 && m > 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiNC", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " "]], SqrtBox["m"]], RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]], "+", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]], ")"]]]]]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "\[And]", RowBox[List["m", ">", "0"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> nc </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mfrac> <mrow> <mi> ⅈ </mi> <mtext> </mtext> </mrow> <msqrt> <mi> m </mi> </msqrt> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ( </mo> <mrow> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> <mo> ) </mo> </mrow> <mo> - </mo> <mrow> <msup> <mi> sn </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mfrac> <mrow> <mi> m </mi> <mo> - </mo> <mn> 1 </mn> </mrow> <mi> m </mi> </mfrac> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mn> 0 </mn> <mo> < </mo> <mi> z </mi> <mo> < </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <mi> m </mi> <mo> > </mo> <mn> 0 </mn> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiNC </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <times /> <apply> <times /> <imaginaryi /> <apply> <power /> <apply> <power /> <ci> m </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <plus /> <apply> <ci> EllipticK </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <ci> InverseJacobiSN </ci> <ci> z </ci> <apply> <times /> <apply> <plus /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> m </ci> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <lt /> <cn type='integer'> 0 </cn> <ci> z </ci> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <ci> m </ci> <cn type='integer'> 0 </cn> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiNC", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["\[ImaginaryI]", " ", RowBox[List["(", RowBox[List[RowBox[List["-", RowBox[List["InverseJacobiSN", "[", RowBox[List["z", ",", FractionBox[RowBox[List["m", "-", "1"]], "m"]]], "]"]]]], "+", RowBox[List["EllipticK", "[", FractionBox[RowBox[List["m", "-", "1"]], "m"], "]"]]]], ")"]]]], SqrtBox["m"]], "/;", RowBox[List[RowBox[List["0", "<", "z", "<", "1"]], "&&", RowBox[List["m", ">", "0"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|