|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.45.02.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiNS[z, m] == Integrate[1/(Sqrt[t^2 - 1] Sqrt[t^2 - m]),
{t, z, Infinity}] /; Element[z, Reals] && z^2 > 1 && z^2 > m
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[RowBox[List["InverseJacobiNS", "[", RowBox[List["z", ",", "m"]], "]"]], "\[Equal]", RowBox[List[SubsuperscriptBox["\[Integral]", "z", "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "m"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "\[And]", RowBox[List[SuperscriptBox["z", "2"], ">", "1"]], "\[And]", RowBox[List[SuperscriptBox["z", "2"], ">", "m"]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> ns </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <msubsup> <mo> ∫ </mo> <mi> z </mi> <mi> ∞ </mi> </msubsup> <mrow> <mfrac> <mn> 1 </mn> <mrow> <msqrt> <mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mn> 1 </mn> </mrow> </msqrt> <mo> ⁢ </mo> <msqrt> <mrow> <msup> <mi> t </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mi> m </mi> </mrow> </msqrt> </mrow> </mfrac> <mo> ⁢ </mo> <mrow> <mo> ⅆ </mo> <mi> t </mi> </mrow> </mrow> </mrow> </mrow> <mo> /; </mo> <mrow> <mrow> <mi> z </mi> <mo> ∈ </mo> <semantics> <mi> ℝ </mi> <annotation encoding='Mathematica'> TagBox["\[DoubleStruckCapitalR]", Function[Reals]] </annotation> </semantics> </mrow> <mo> ∧ </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> > </mo> <mn> 1 </mn> </mrow> <mo> ∧ </mo> <mrow> <msup> <mi> z </mi> <mn> 2 </mn> </msup> <mo> > </mo> <mi> m </mi> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <ci> InverseJacobiNS </ci> <ci> z </ci> <ci> m </ci> </apply> <apply> <int /> <bvar> <ci> t </ci> </bvar> <lowlimit> <ci> z </ci> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <cn type='integer'> 1 </cn> <apply> <power /> <apply> <times /> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> t </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> m </ci> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <and /> <apply> <in /> <ci> z </ci> <reals /> </apply> <apply> <gt /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> 1 </cn> </apply> <apply> <gt /> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <ci> m </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiNS", "[", RowBox[List["z_", ",", "m_"]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SubsuperscriptBox["\[Integral]", "z", "\[Infinity]"], RowBox[List[FractionBox["1", RowBox[List[SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "1"]]], " ", SqrtBox[RowBox[List[SuperscriptBox["t", "2"], "-", "m"]]]]]], RowBox[List["\[DifferentialD]", "t"]]]]]], "/;", RowBox[List[RowBox[List["z", "\[Element]", "Reals"]], "&&", RowBox[List[SuperscriptBox["z", "2"], ">", "1"]], "&&", RowBox[List[SuperscriptBox["z", "2"], ">", "m"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|