|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.45.03.0002.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
InverseJacobiNS[z, 1/2] == Sqrt[2] EllipticF[ArcSin[z], 2] +
(I Pi^(3/2))/(2 Gamma[3/4]^2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List["InverseJacobiNS", "[", RowBox[List["z", ",", FractionBox["1", "2"]]], "]"]], "\[Equal]", " ", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", "2"]], "]"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <msup> <mi> ns </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ⩵ </mo> <mrow> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> ⁢ </mo> <mrow> <mi> F </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <msup> <mi> sin </mi> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> <mo> ( </mo> <mi> z </mi> <mo> ) </mo> </mrow> <mo> ❘ </mo> <mn> 2 </mn> </mrow> <mo> ) </mo> </mrow> </mrow> <mo> + </mo> <mfrac> <mrow> <mi> ⅈ </mi> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 3 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mfrac> <mn> 3 </mn> <mn> 4 </mn> </mfrac> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <ci> InverseJacobiNS </ci> <ci> z </ci> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <plus /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <ci> EllipticF </ci> <apply> <arcsin /> <ci> z </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <apply> <times /> <imaginaryi /> <apply> <power /> <pi /> <cn type='rational'> 3 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <ci> Gamma </ci> <cn type='rational'> 3 <sep /> 4 </cn> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List["InverseJacobiNS", "[", RowBox[List["z_", ",", FractionBox["1", "2"]]], "]"]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[SqrtBox["2"], " ", RowBox[List["EllipticF", "[", RowBox[List[RowBox[List["ArcSin", "[", "z", "]"]], ",", "2"]], "]"]]]], "+", FractionBox[RowBox[List["\[ImaginaryI]", " ", SuperscriptBox["\[Pi]", RowBox[List["3", "/", "2"]]]]], RowBox[List["2", " ", SuperscriptBox[RowBox[List["Gamma", "[", FractionBox["3", "4"], "]"]], "2"]]]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|