Wolfram Researchfunctions.wolfram.comOther Wolfram Sites
Search Site
Function CategoriesGraphics GalleryNotationsGeneral IdentitiesAbout This Site Email Comments

View Related Information In
The Documentation Center
MathWorld

Download All Formulas For This Function
Mathematica Notebook
PDF File

Download All Introductions For This Function
Mathematica Notebook
PDF File

 

Developed with Mathematica -- Download a Free Trial Version
 











JacobiAmplitude






Mathematica Notation

Traditional Notation









Elliptic Functions > JacobiAmplitude[z,m] > Transformations > Related transformations





http://functions.wolfram.com/09.24.16.0005.01









  


  










Input Form





Cot[JacobiAmplitude[-((Sqrt[2] z)/Sqrt[(a - Sqrt[a^2 - 4 b])/b]), (2 Sqrt[a^2 - 4 b])/(a + Sqrt[a^2 - 4 b])]]^2 == (2 x)/(a + Sqrt[a^2 - 4 b]) /; {x, y} == EllipticExp[z, {a, b}]










Standard Form





Cell[BoxData[RowBox[List[RowBox[List[SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox["2"], " ", "z"]], SqrtBox[FractionBox[RowBox[List["a", "-", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], "b"]]]]], ",", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]]], "]"]], "]"]], "2"], "\[Equal]", FractionBox[RowBox[List["2", "x"]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]]]], "/;", RowBox[List[RowBox[List["{", RowBox[List["x", ",", "y"]], "}"]], "\[Equal]", RowBox[List["EllipticExp", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]]]]










MathML Form







<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mrow> <mrow> <msup> <mi> cot </mi> <mn> 2 </mn> </msup> <mo> ( </mo> <mrow> <mi> am </mi> <mo> &#8289; </mo> <mo> ( </mo> <mrow> <mrow> <mo> - </mo> <mfrac> <mrow> <msqrt> <mn> 2 </mn> </msqrt> <mo> &#8290; </mo> <mi> z </mi> </mrow> <msqrt> <mfrac> <mrow> <mi> a </mi> <mo> - </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mi> b </mi> </mfrac> </msqrt> </mfrac> </mrow> <mo> &#10072; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> ) </mo> </mrow> <mo> ) </mo> </mrow> <mo> &#10869; </mo> <mfrac> <mrow> <mn> 2 </mn> <mo> &#8290; </mo> <mi> x </mi> </mrow> <mrow> <mi> a </mi> <mo> + </mo> <msqrt> <mrow> <msup> <mi> a </mi> <mn> 2 </mn> </msup> <mo> - </mo> <mrow> <mn> 4 </mn> <mo> &#8290; </mo> <mi> b </mi> </mrow> </mrow> </msqrt> </mrow> </mfrac> </mrow> <mo> /; </mo> <mrow> <mrow> <mo> { </mo> <mrow> <mi> x </mi> <mo> , </mo> <mi> y </mi> </mrow> <mo> } </mo> </mrow> <mo> &#10869; </mo> <mrow> <mi> eexp </mi> <mo> ( </mo> <mstyle fontweight='normal' fontstyle='italic'> <mrow> <mrow> <mi> z </mi> <mo> ; </mo> <mi> a </mi> </mrow> <mo> , </mo> <mi> b </mi> </mrow> </mstyle> <mo fontweight='normal' fontstyle='normal'> ) </mo> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <ci> Condition </ci> <apply> <eq /> <apply> <power /> <apply> <cot /> <apply> <ci> JacobiAmplitude </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <ci> z </ci> <apply> <power /> <apply> <power /> <apply> <times /> <apply> <plus /> <ci> a </ci> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> </apply> <apply> <power /> <ci> b </ci> <cn type='integer'> -1 </cn> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> x </ci> <apply> <power /> <apply> <plus /> <ci> a </ci> <apply> <power /> <apply> <plus /> <apply> <power /> <ci> a </ci> <cn type='integer'> 2 </cn> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <cn type='integer'> 4 </cn> <ci> b </ci> </apply> </apply> </apply> <cn type='rational'> 1 <sep /> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <eq /> <list> <ci> x </ci> <ci> y </ci> </list> <apply> <ci> eexp </ci> <apply> <ci> CompoundExpression </ci> <ci> z </ci> <ci> a </ci> </apply> <ci> b </ci> </apply> </apply> </apply> </annotation-xml> </semantics> </math>










Rule Form





Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", SuperscriptBox[RowBox[List["Cot", "[", RowBox[List["JacobiAmplitude", "[", RowBox[List[RowBox[List["-", FractionBox[RowBox[List[SqrtBox["2"], " ", "z_"]], SqrtBox[FractionBox[RowBox[List["a_", "-", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]], "b_"]]]]], ",", FractionBox[RowBox[List["2", " ", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]], RowBox[List["a_", "+", SqrtBox[RowBox[List[SuperscriptBox["a_", "2"], "-", RowBox[List["4", " ", "b_"]]]]]]]]]], "]"]], "]"]], "2"], "]"]], "\[RuleDelayed]", RowBox[List[FractionBox[RowBox[List["2", " ", "x"]], RowBox[List["a", "+", SqrtBox[RowBox[List[SuperscriptBox["a", "2"], "-", RowBox[List["4", " ", "b"]]]]]]]], "/;", RowBox[List[RowBox[List["{", RowBox[List["x", ",", "y"]], "}"]], "\[Equal]", RowBox[List["EllipticExp", "[", RowBox[List["z", ",", RowBox[List["{", RowBox[List["a", ",", "b"]], "}"]]]], "]"]]]]]]]]]]










Date Added to functions.wolfram.com (modification date)





2001-10-29