|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
http://functions.wolfram.com/09.27.20.0006.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
D[JacobiCS[z, m], {z, \[Alpha]}] ==
FDPowerConstant[z, -1, \[Alpha]] z^(-\[Alpha] - 1) +
(1/2) Sum[((-1)^k Pi^(2 k) BernoulliB[2 k] z^(2 k - \[Alpha] - 1))/
(EllipticK[m]^(2 k) (k Gamma[2 k - \[Alpha]])), {k, 1, Infinity}] -
((2^\[Alpha] Pi^(5/2) z^(1 - \[Alpha]))/EllipticK[m]^2)
Sum[((k EllipticNomeQ[m]^(2 k))/(EllipticNomeQ[m]^(2 k) + 1))
HypergeometricPFQRegularized[{1}, {1 - \[Alpha]/2, (3 - \[Alpha])/2},
-((k^2 Pi^2 z^2)/(4 EllipticK[m]^2))], {k, 1, Infinity}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cell[BoxData[RowBox[List[RowBox[List[SubscriptBox["\[PartialD]", RowBox[List["{", RowBox[List["z", ",", "\[Alpha]"]], "}"]]], RowBox[List["JacobiCS", "[", RowBox[List["z", ",", "m"]], "]"]]]], "\[Equal]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], SuperscriptBox["\[Pi]", RowBox[List["2", "k"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List[RowBox[List["-", "2"]], "k"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", "k"]], "-", "\[Alpha]", "-", "1"]]]]], RowBox[List["k", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", "k"]], "-", "\[Alpha]"]], "]"]]]]]]]]], "-", RowBox[List[FractionBox[RowBox[List[SuperscriptBox["2", "\[Alpha]"], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], RowBox[List[FractionBox[RowBox[List["k", " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", "k"]]]]], RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", "k"]]], "+", "1"]]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["k", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]], "]"]]]]]]]]]]]]]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<math xmlns='http://www.w3.org/1998/Math/MathML' mathematica:form='TraditionalForm' xmlns:mathematica='http://www.wolfram.com/XML/'> <semantics> <mrow> <mfrac> <mrow> <msup> <mo> ∂ </mo> <mi> α </mi> </msup> <mrow> <mi> cs </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mi> z </mi> <mo> ❘ </mo> <mi> m </mi> </mrow> <mo> ) </mo> </mrow> </mrow> <mrow> <mo> ∂ </mo> <msup> <mi> z </mi> <mi> α </mi> </msup> </mrow> </mfrac> <mo> ⩵ </mo> <mrow> <mrow> <mrow> <msubsup> <mi> ℱ𝒞 </mi> <mi> exp </mi> <mrow> <mo> ( </mo> <mi> α </mi> <mo> ) </mo> </mrow> </msubsup> <mo> ( </mo> <mrow> <mi> z </mi> <mo> , </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </mrow> <mo> ) </mo> </mrow> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mo> + </mo> <mrow> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mfrac> <mrow> <msup> <mrow> <mo> ( </mo> <mrow> <mo> - </mo> <mn> 1 </mn> </mrow> <mo> ) </mo> </mrow> <mi> k </mi> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msub> <semantics> <mi> B </mi> <annotation encoding='Mathematica'> TagBox["B", BernoulliB] </annotation> </semantics> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msub> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mrow> <mo> - </mo> <mn> 2 </mn> </mrow> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> α </mi> <mo> - </mo> <mn> 1 </mn> </mrow> </msup> </mrow> <mrow> <mi> k </mi> <mo> ⁢ </mo> <mrow> <mi> Γ </mi> <mo> ⁡ </mo> <mo> ( </mo> <mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> <mo> - </mo> <mi> α </mi> </mrow> <mo> ) </mo> </mrow> </mrow> </mfrac> </mrow> </mrow> <mo> - </mo> <mtext>  </mtext> <mrow> <mfrac> <mrow> <msup> <mn> 2 </mn> <mi> α </mi> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mrow> <mn> 5 </mn> <mo> / </mo> <mn> 2 </mn> </mrow> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mrow> <mn> 1 </mn> <mo> - </mo> <mi> α </mi> </mrow> </msup> <mtext> </mtext> </mrow> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mfrac> <mo> ⁢ </mo> <mrow> <munderover> <mo> ∑ </mo> <mrow> <mi> k </mi> <mo> = </mo> <mn> 1 </mn> </mrow> <mi> ∞ </mi> </munderover> <mrow> <mfrac> <mrow> <mi> k </mi> <mo> ⁢ </mo> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mtext> </mtext> </mrow> <mrow> <msup> <mrow> <semantics> <mi> q </mi> <annotation-xml encoding='MathML-Content'> <ci> EllipticNomeQ </ci> </annotation-xml> </semantics> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mrow> <mn> 2 </mn> <mo> ⁢ </mo> <mi> k </mi> </mrow> </msup> <mo> + </mo> <mn> 1 </mn> </mrow> </mfrac> <mo> ⁢ </mo> <semantics> <mrow> <mrow> <msub> <mo>   </mo> <mn> 1 </mn> </msub> <msub> <mover> <mi> F </mi> <mo> ~ </mo> </mover> <mn> 2 </mn> </msub> </mrow> <mo> ⁡ </mo> <mrow> <mo> ( </mo> <mrow> <mn> 1 </mn> <mo> ; </mo> <mrow> <mrow> <mn> 1 </mn> <mo> - </mo> <mfrac> <mi> α </mi> <mn> 2 </mn> </mfrac> </mrow> <mo> , </mo> <mfrac> <mrow> <mn> 3 </mn> <mo> - </mo> <mi> α </mi> </mrow> <mn> 2 </mn> </mfrac> </mrow> <mo> ; </mo> <mrow> <mo> - </mo> <mfrac> <mrow> <msup> <mi> k </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> π </mi> <mn> 2 </mn> </msup> <mo> ⁢ </mo> <msup> <mi> z </mi> <mn> 2 </mn> </msup> </mrow> <mrow> <mn> 4 </mn> <mo> ⁢ </mo> <msup> <mrow> <mi> K </mi> <mo> ⁡ </mo> <mo> ( </mo> <mi> m </mi> <mo> ) </mo> </mrow> <mn> 2 </mn> </msup> </mrow> </mfrac> </mrow> </mrow> <mo> ) </mo> </mrow> </mrow> <annotation encoding='Mathematica'> TagBox[TagBox[RowBox[List[RowBox[List[SubscriptBox["\[InvisiblePrefixScriptBase]", FormBox["1", TraditionalForm]], SubscriptBox[OverscriptBox["F", "~"], FormBox["2", TraditionalForm]]]], "\[InvisibleApplication]", RowBox[List["(", RowBox[List[TagBox[TagBox[TagBox["1", HypergeometricPFQRegularized, Rule[Editable, True]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[TagBox[RowBox[List[TagBox[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], HypergeometricPFQRegularized, Rule[Editable, True]], ",", TagBox[FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"], HypergeometricPFQRegularized, Rule[Editable, True]]]], InterpretTemplate[Function[List[SlotSequence[1]]]]], HypergeometricPFQRegularized, Rule[Editable, False]], ";", TagBox[RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["k", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["K", "(", "m", ")"]], "2"]]]]]], HypergeometricPFQRegularized, Rule[Editable, True]]]], ")"]]]], InterpretTemplate[Function[HypergeometricPFQRegularized[Slot[1], Slot[2], Slot[3]]]], Rule[Editable, False]], HypergeometricPFQRegularized] </annotation> </semantics> </mrow> </mrow> </mrow> </mrow> </mrow> <annotation-xml encoding='MathML-Content'> <apply> <eq /> <apply> <partialdiff /> <bvar> <ci> z </ci> <degree> <ci> α </ci> </degree> </bvar> <apply> <ci> JacobiCS </ci> <ci> z </ci> <ci> m </ci> </apply> </apply> <apply> <plus /> <apply> <times /> <apply> <apply> <power /> <apply> <ci> Subscript </ci> <ci> ℱ𝒞 </ci> <ci> exp </ci> </apply> <ci> α </ci> </apply> <ci> z </ci> <cn type='integer'> -1 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> <apply> <times /> <cn type='rational'> 1 <sep /> 2 </cn> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <power /> <cn type='integer'> -1 </cn> <ci> k </ci> </apply> <apply> <power /> <pi /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <ci> BernoulliB </ci> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> -2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <power /> <apply> <times /> <ci> k </ci> <apply> <ci> Gamma </ci> <apply> <plus /> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <times /> <apply> <power /> <cn type='integer'> 2 </cn> <ci> α </ci> </apply> <apply> <power /> <pi /> <cn type='rational'> 5 <sep /> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> </apply> <apply> <power /> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <sum /> <bvar> <ci> k </ci> </bvar> <lowlimit> <cn type='integer'> 1 </cn> </lowlimit> <uplimit> <infinity /> </uplimit> <apply> <times /> <apply> <times /> <ci> k </ci> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <apply> <power /> <apply> <plus /> <apply> <power /> <apply> <ci> EllipticNomeQ </ci> <ci> m </ci> </apply> <apply> <times /> <cn type='integer'> 2 </cn> <ci> k </ci> </apply> </apply> <cn type='integer'> 1 </cn> </apply> <cn type='integer'> -1 </cn> </apply> </apply> <apply> <ci> HypergeometricPFQRegularized </ci> <list> <cn type='integer'> 1 </cn> </list> <list> <apply> <plus /> <cn type='integer'> 1 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <ci> α </ci> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> <apply> <times /> <apply> <plus /> <cn type='integer'> 3 </cn> <apply> <times /> <cn type='integer'> -1 </cn> <ci> α </ci> </apply> </apply> <apply> <power /> <cn type='integer'> 2 </cn> <cn type='integer'> -1 </cn> </apply> </apply> </list> <apply> <times /> <cn type='integer'> -1 </cn> <apply> <times /> <apply> <power /> <ci> k </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <pi /> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <ci> z </ci> <cn type='integer'> 2 </cn> </apply> <apply> <power /> <apply> <times /> <cn type='integer'> 4 </cn> <apply> <power /> <apply> <ci> EllipticK </ci> <ci> m </ci> </apply> <cn type='integer'> 2 </cn> </apply> </apply> <cn type='integer'> -1 </cn> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </apply> </annotation-xml> </semantics> </math>
|
|
|
|
|
|
|
|
|
|
| |
|
|
|
|
| Cell[BoxData[RowBox[List[RowBox[List["HoldPattern", "[", RowBox[List[SubscriptBox["\[PartialD]", RowBox[List[RowBox[List["{", RowBox[List["z_", ",", "\[Alpha]_"]], "}"]]]]], RowBox[List["JacobiCS", "[", RowBox[List["z_", ",", "m_"]], "]"]]]], "]"]], "\[RuleDelayed]", RowBox[List[RowBox[List[RowBox[List["FDPowerConstant", "[", RowBox[List["z", ",", RowBox[List["-", "1"]], ",", "\[Alpha]"]], "]"]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["-", "\[Alpha]"]], "-", "1"]]]]], "+", RowBox[List[FractionBox["1", "2"], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[SuperscriptBox[RowBox[List["(", RowBox[List["-", "1"]], ")"]], "k"], " ", SuperscriptBox["\[Pi]", RowBox[List["2", " ", "k"]]], " ", RowBox[List["BernoulliB", "[", RowBox[List["2", " ", "k"]], "]"]], " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], RowBox[List[RowBox[List["-", "2"]], " ", "k"]]], " ", SuperscriptBox["z", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]", "-", "1"]]]]], RowBox[List["k", " ", RowBox[List["Gamma", "[", RowBox[List[RowBox[List["2", " ", "k"]], "-", "\[Alpha]"]], "]"]]]]]]]]], "-", FractionBox[RowBox[List[RowBox[List["(", RowBox[List[SuperscriptBox["2", "\[Alpha]"], " ", SuperscriptBox["\[Pi]", RowBox[List["5", "/", "2"]]], " ", SuperscriptBox["z", RowBox[List["1", "-", "\[Alpha]"]]]]], ")"]], " ", RowBox[List[UnderoverscriptBox["\[Sum]", RowBox[List["k", "=", "1"]], "\[Infinity]"], FractionBox[RowBox[List[RowBox[List["(", RowBox[List["k", " ", SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]]]], ")"]], " ", RowBox[List["HypergeometricPFQRegularized", "[", RowBox[List[RowBox[List["{", "1", "}"]], ",", RowBox[List["{", RowBox[List[RowBox[List["1", "-", FractionBox["\[Alpha]", "2"]]], ",", FractionBox[RowBox[List["3", "-", "\[Alpha]"]], "2"]]], "}"]], ",", RowBox[List["-", FractionBox[RowBox[List[SuperscriptBox["k", "2"], " ", SuperscriptBox["\[Pi]", "2"], " ", SuperscriptBox["z", "2"]]], RowBox[List["4", " ", SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]], "]"]]]], RowBox[List[SuperscriptBox[RowBox[List["EllipticNomeQ", "[", "m", "]"]], RowBox[List["2", " ", "k"]]], "+", "1"]]]]]]], SuperscriptBox[RowBox[List["EllipticK", "[", "m", "]"]], "2"]]]]]]]] |
|
|
|
|
|
|
|
|
|
|
Date Added to functions.wolfram.com (modification date)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|